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ABSTRACT

The Infrared Astronomical Satellite carried out a nearly complete survey of the infrared
sky, and the survey data are important for the study of many astrophysical phenomena.
However, many data sets at other wavelengths have higher resolutions than that of the co-
added TRAS maps, and high resolution IRAS images are strongly desired both for their own

information content and their usefulness in correlation studies.

The HIRES program was developed by the Infrared Processing and Analysis Center
(IPAC) to produce high resolution (~ 1’) images from IRAS data using the Maximum Cor-
relation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively
parallel supercomputer, other software developments for mass production of HIRES images,

and the TRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100 pm.

Images produced from the MCM algorithm sometimes suffer from visible striping and
ringing artifacts. Correcting detector gain offsets and using a Burg entropy metric in the
reconstruction scheme were found to be effective in suppressing these artifacts. A variation

of the destriping algorithm was used to subtract zodiacal emission.



1. INTRODUCTION

The Infrared Astronomical Satellite (IRAS) provided our first comprehensive look at the
infrared sky, producing a nearly complete survey at mid- to far-infrared wavelengths (12, 25,
60, and 100 pm) (Beichman (1987); Soifer, Houck, and Neugebauer (1987); IRAS Catalogs
and Atlases: Explanatory Supplement (1988)). Images made from the IRAS survey data
show a wealth of extended structure from star-forming regions and other components of the
interstellar medium. A variety of studies exploiting the TRAS images have been made to date
ranging from structure on a galactic scale to detailed studies of individual molecular clouds
(e.g. Beichman et al. (1986); Weiland et al. (1986); Terebey and Fich (1986); Boulanger
and Perault (1988); Sodroski et al. (1989); Scoville and Good (1989); Snell, Heyer, and
Schloerb (1989); Clemens, Yun, and Heyer (1991); Wood et al. (1994)). The strength of
IRAS is the completeness of the survey. However, in many cases the spatial resolution of
the comparison data sets at other wavelengths is better than for JRAS, and thus the 4’ —
5’ resolution of the released IRAS images (the Infrared Sky Survey Atlas, ISSA, Wheelock
et al. (1994)) can limit the comparison. The desire for higher spatial resolution combined
with the paucity of new infrared satellite missions has inspired many efforts to extract high
spatial resolution information from the data (e.g. Bontekoe et al. (1994); ). The products
most widely accessible to the US science community are the HIRES images distributed by
the Infrared Processing and Analysis Center (IPAC), which are based on the Maximum
Correlation Method (MCM) (Aumann, Fowler, and Melnyk 1990). The HIRES images have
been successfully used for a variety of galactic and extragalactic studies (Rice (1993); Surace

et al. (1993); Terebey and Mazzarella (1994)).

Application of the HIRES algorithm to the IRAS data has been limited largely by
the computational resources available for HIRES processing. A 1° x 1° field of typical scan
coverage takes 1 hour of CPU time on a Sun SPARCstation 10, for all four wavelength bands
and 20 iterations (at which point artifacts limit further improvement of image quality). To

overcome these CPU limitations we have undertaken the porting of the HIRES software to



the Intel Delta and Paragon parallel supercomputers. HIRES processing is now feasible for

large regions of the sky.

As part of a program in high-performance computational science and engineering, Cal-
tech has developed significant software and hardware capabilities for massively parallel com-
puting (also called concurrent supercomputing). Among the several concurrent computers
currently available at Caltech is the 512-node Intel Touchstone Delta, a prototype parallel
supercomputer with measured performance of 13 GFLOPS, 8 Gigabytes of memory, and 90
Gigabytes of disk. Upgraded resources include a 56-node and a 512-node Intel Paragon. The
new 512-node Intel Paragon Model L38, has a peak speed of 38.4 GFLOPS, 16 Gigabytes of
memory, and 14 RAIDs that control 67.2 Gigabytes of disk, one Ethernet node, two HIPPI
nodes, and six service nodes. The high demand for HIRES images, along with the availability
of parallel computing facilities, motivated the port of HIRES to the parallel supercomputers.

The development of new artifact reduction algorithms allows the iterative procedure
to be carried much further, requiring more CPU time and further justifying the parallel

computing approach.

These efforts made possible a large scale mapping project: high resolution /RAS map-
ping of the Galactic plane. The new IRAS Galaxy Atlas (IGA) maps provide a 20-fold
improvement in areal information content over current /JRAS 60 and 100 ym maps and will

be valuable for a wide range of scientific studies, including:

e The structure and dynamics of the interstellar medium (ISM)
e Cloud core surveys within giant molecular clouds
e Determination of initial mass functions (IMFs) of massive stars

e Study of supernova remnants (SNRs)

The IGA images will be made available on-line at IPAC. Additional information will
come from combining the 60 and 100 ym HIRES data with the images and catalogs being



produced from the 12 and 25 ym IRAS data by the Air Force Phillips Laboratory and Mission
Research Corporation. Alternatively, standard four band HIRES images can be requested
from IPAC.

The original HIRES algorithm which produces high resolution JRAS images and later
enhancements are described in Section 3. The Maximum Correlation Method (MCM) algo-
rithm (Aumann, Fowler, and Melnyk 1990) produces high resolution images from the survey
and additional observation (AO) data, using a nonlinear iterative scheme. The resulting
images have resolution of about 1’, compared to the 4" — 5’ subtended by the 100 ym band
detectors in the TRAS focal plane. A description of the basic MCM algorithm is outlined in
Section 3.1. In Sections 3.2 and 3.4 we offer descriptions of artifact reduction algorithms,
namely using estimates of gain offset to eliminate striping, and using a Burg entropy metric
in the iterative algorithm to suppress ringing around bright point sources. Detector data
calibration and zodiacal light subtraction are carried out with a spin-off method of the de-
striping algorithm (Section 3.3). Validation of the algorithmic enhancements and output

image properties is given in Section 4.

In the parallel processing each 1° x 1° image field is mapped to an 8- or 16-node process
grid, which shares the computation by loading different observation scans. An efficiency
of 60 % is reached with 8 nodes. The parallelization strategy and pipeline implementation
(which coordinates computation and data transfer on workstations and supercomputers) will

be discussed in Section 5.

2. RELEVANT INFORMATION ABOUT IRAS

The IRAS survey was designed for the identification of point sources, rather than as an
imaging instrument. The data were taken with rectangular detectors that scanned the sky
multiple times in “push-broom” fashion (e.g. see Fig. 2). The satellite data are fundamen-
tally in the form of one-dimensional data streams for each detector. During post-processing

it was discovered that two-dimensional images could be made by stitching together, i.e.
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Figure 1: The IRAS Focal Plane
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Figure 2: IRAS scan pattern in M51. Dots represent 60 um detector footprint center

positions. Lower right cross indicates FWHM of the 60 ym detector response function.



coadding, these one-dimensional detector streams. This basic processing accounts for many
of the characteristics of the TRAS images. For example, stripes are a common image artifact
because there are small gain variations in the one-dimensional detector streams. Also, the
shape of the beam varies from place to place because the coverage, meaning number and
orientation of one-dimensional detector streams, is nonuniform. The effective data oversam-
pling make the TRAS data amenable to resolution enhancement because of the geometric

information contained within overlapping data samples.

The IRAS focal plane (shown in Fig. 1) included eight staggered linear arrays subtending
30" in width, two in each of four spectral bands at 12, 25, 60, and 100 ym. Data rate
considerations forced the detector sizes to be much larger than the diffraction limit of the
telescope. The typical detector sizes were 45 x 267, 45 x 279, 90 x 285, and 180 x 303 arcsec
(full width at half maximum response, FWHM) respectively, at the four wavelength bands.

This combination of focal plane, detector size, and scan pattern optimized detection of
point sources in areas of the sky where the separation between sources was large compared
to the sizes of the detectors. However, it complicates the construction of images of regions

containing spatial structure on the scale of arcminutes.

3. ALGORITHM

A typical HIRES processing consists of the following steps:

1. Uncompressing and extracting calibrated data scans from archive;

2. Data preprocessing, including cross-scan offset calibration, baseline removal, deglitch-
ing, ! and noise estimation;

3. Subtraction of zodiacal emission (optional);

4. Reprojecting data to desired geometry (optional);

!Deglitching stands for the removal of spurious non-source-like signals called glitches, typically caused by
cosmic ray events in individual detectors.



TABLE 1
Definition of Notations

D; measured detector flux at data sample 7

fi intensity at image pixel j

f;k) estimate of f; at iteration k

F; =3%;rijf; mock data flux at sample ¢ given image f;
C; = D;/F; detector correction factor

c;j pixel correction factor

G gain offset of detectors in scanline L

D} = GLD; gain compensated detector flux

Cr = Df/F; gain compensated detector correction factor
AS Burg entropy difference between two images f; and f; + Af;
gjj! Burg entropy metric tensor

5. High resolution image reconstruction.

This section describes the algorithmic aspects of HIRES, specifically, issues involved in

steps 2, 3, and 5. For details on the technical aspects of the implementation, see Section 5.

Table 1 summarizes the notations used in this section.

3.1. The Mazimum Correlation Method

Starting from a model of the sky flux distribution, the HIRES MCM algorithm folds
the model through the IRAS detector responses, compares the result track-by-track ? to
the observed flux, and calculates corrections to the model. One important characteristic
is that the standard MCM algorithm conserves flux. The process is taken through about
20 iterations at which point artifacts limit further improvement. The algorithm yields a

resolution of approximately 1’ at 60 ym. This represents an improvement in resolution by as

2Track, also called leg or scanline, refers to the set of data samples collected consecutively by one detector
moving across a given field.



much as a factor of 20 in solid angle over the previous images from the IRA.S Full Resolution
Survey Coadder (FRESCO). We give a brief description of the MCM algorithm following

the formalism and notations of Aumann, Fowler, and Melnyk (1990).

Given an image grid f;, with n pixels j = 1,...,n and m detector samples (footprints)
with fluxes D; : © = 1, ..., m, whose centers are contained in the image grid, an image can
be constructed iteratively from a zeroth estimate of the image, fj(-) = const. > 0 for all 5. In
other words the initial guess is a uniform, flat, and positive definite map. For each footprint,

a correction factor C; is computed as,
Ci = D/ F;, (1)
where
Fi =Y rifi, (2)
J

and r;; is the value of the sth footprint’s response function at image pixels f;. Therefore F;

is the current estimate of the ¢th footprint’s flux, given image grid f;.

A mean correction factor for the jth image pixel is computed by projecting the correction

factor for the footprints into the image domain:

¢j = [D_(rij/o3)Cil/[D_(ri/ o7))- (3)

1

The weight attached to the ith correction factor for the jth pixel is r;;/0?, where o; is

the a priori noise assigned to the ith footprint.

The kth estimate of the image is computed by

£ = (e, (4)

In practice when the footprint noise o; is not easily estimated, an equal noise value
for all footprints is assumed, and the MCM is identical to the Richardson-Lucy algorithm
(Richardson (1972); Lucy (1974)).
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3.2.  Destriping Algorithm

Stripes are the most prominent artifacts of the HIRES images. HIRES takes in the
IRAS detector data, and if not perfectly calibrated, would try to fit the gain differences in
the detectors by a striped image. The striping builds up in amplitude and sharpness along
with the HIRES iterations, as the algorithm refines the “resolution” of the stripes (see Fig.
3.2(a) and (b)).

The IPAC program LAUNDR (Fowler and Melnyk 1990) invokes several one dimen-
sional flat fielding and deglitching techniques. The basic algorithm applied is clamping the
background of different scan lines (taken as a low percentile in detector flux histogram for
each scan line) to a common level. For the purpose of destriping, the one dimensional algo-
rithm works well for regions with a well-defined baseline, but the result is not satisfactory

for regions where structure exists in all spatial frequencies.

3.2.1. Destriping with Uniform Gain Compensation

Our approach combines the image reconstruction and the destriping process. Since
the striping gets amplified through the iterations, the idea of applying constraints to the

correction factors is natural.

Assume footprints in the same leg L suffer from the same unknown gain offset G, then
D! = G.D, (5)

is the “true” detector flux, had the detector gain been perfectly calibrated. The G.’s can
be seen as extra parameters to be estimated, besides the image pixels f;. Under a Poisson

framework, the maximum likelihood estimate for Gy, is

o (%)= 1 @r -1 )

¢ in leg L ¢ in leg L

in which C} is the gain compensated correction factor. C} is then used in place of C; in
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Figure 3: (a). st iteration image for a field in p Ophiuchus(100 gm band); (b). 20th
iteration, standard HIRES; (c). 20th iteration, with uniform gain compensation; (d).
20th iteration, with local gain compensation. Size of image is 1° x 1°. Height of surface
represents flux. Local gain compensation method produces high-resolution images that
are free of stripes, the most common artifact in standard HIRES processing.
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Equation (3) to compute the pixel correction factors. A new set of G, is estimated for every

MCM iteration.

This choice of the unknown gain offset G, minimizes the mutual information between
the sets D] and Fj; in the leg, i.e. the resulting correction factors C; will extract the minimum
amount of information from the stream D;. From the viewpoint of the maximum entropy

principle, this is the most reasonable choice.

From another point of view, this strategy works because the procedure of averaging C;’s
to get ¢; has a smoothing effect on the image, so that the image f; and estimated flux F; do

not contain as much striping power as the footprints D;.

3.2.2. Destriping with Local Gain Compensation

A further complication lies in the fact that the assumption of a uniform gain offset in
a certain leg is only approximately true. Various hysteresis effects (e.g. see Chapter IV of
IRAS Catalogs and Atlases: Explanatory Supplement (1988)) cause the gain to drift slightly
within the 1° range. The more aggressive form of the destriping algorithm estimates the gain
offset locally as the weighted geometric mean of the correction factors for nearby footprints,
so the estimated gain correction for each footprint varies slowly along the leg. The local
gain offset is compared to the global one estimated from the entire leg, and if they differ by
more than 10 % then the global value is used, since the gain is not expected to drift that
much over a 1° scale, and the variation in computed offset average is most likely due to real
local structure. We used an averaging length of 10’ to estimate the local offset. Because it is
larger than the spatial resolution of the first iteration image (5'), it is safe to refer the average
correction factor on that scale as due to gain offset. The 10’ length scale is also small enough
to capture the drifting behavior of the gain, as shown by visual inspection of both the output
images and their Fourier power spectra. Unlike the standard HIRES algorithm (in which
stripes are amplified throughout the iterations), the local gain compensation decreases the

striping power monotonically to a negligible level after roughly 10 iterations.
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One aspect of the local gain compensation method is that the computed correction fac-
tors can cause the flux scale to drift slightly. This is solved by requiring an occasional itera-
tion using the standard MCM algorithm to enforce flux conservation. In practice a standard
MCM iteration performed at 10 and 20 iterations produced no noticeable re-introduction of

stripes.

3.2.3. Results of the Destriping Algorithm

Fig. 3 demonstrates the striking effect of the destriping algorithm. Fig. 3(a) shows
the first iteration image for a 1° x 1° field in p Ophiuchus, which is smooth (blurry). Fig.
3(b) is the 20th iteration image of the field obtained with the standard HIRES algorithm,
and is contaminated with strong striping artifacts. A tremendous improvement is seen in
Fig. 3(c) which is produced with uniform gain compensation, although some weak stripes
are still visible. Finally, using the local gain compensation method gives a stripe-free image,
Fig. 3(d). It is also apparent that Fig. 3(d) contains many high spatial frequency features
that are absent in 3(a).

3.3.  Subtraction of Zodiacal Emission

Zodiacal dust emission is a prominent source of diffuse emission in the IRAS survey,
especially in the 12 and 25 pym bands. The zodiacal contribution to the observed surface
brightness depends on the amount of interplanetary dust along the particular line-of-sight,
an amount which varies with the Earth’s position within the dust cloud. Consequently, the
sky brightness of a particular location on the sky, as observed by IRAS, changes with time
as the Earth moves along its orbit around the Sun. The different zodiacal emission level in
different scanlines, if not subtracted, can cause step discontinuities in the images if adjacent
patches of sky were observed at different times. Cross-scan destriping helps bring together
the background level of scanlines passing through the same local field at different times, but

for large scale astronomical studies it is essential to have the zodiacal emission removed.
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A physical model of the zodiacal foreground emission based on the radiative properties
and spatial distribution of the zodiacal dust was developed by Good (1994). The IRAS Sky
Survey Atlas (ISSA) (Wheelock et al. 1994) made use of this model and subtracted the
predicted zodiacal emission from the detector data before co-adding them. The resulting
ISSA images show a strong Galactic background at 60 and 100 pym that is associated with
molecular and HI clouds in the Galaxy (e.g. Weiland et al. (1986); Terebey and Fich
(1986); Boulanger and Perault (1988); Sodroski et al. (1989); Scoville and Good (1989)).
It is desirable for the high-resolution /RAS Galaxy Atlas to be sensitive to this large-scale

component of Galactic emission.

The zodiacal subtraction is a fairly complicated process, and since HIRES has typically
been used for small fields only, the zodiacal emission has been historically treated as part of
the local background that is subtracted (and thrown away) during the the LAUNDR step.
Fortunately the destriping algorithm offers a way to make use of the zodiacal subtraction
effort that went into the ISSA images — we can estimate the zodiacal emission, by comparing
input detector data and simulated data from the ISSA images, and calibrate the input data
to obtain a background level that is consistent with the ISSA images. The zodiacal emission
is taken as a median difference of flux between real and simulated data, computed over
a one degree range (the characteristic scale of zodiacal foreground variation), and is then
subtracted from the real data. The method therefore only affects the low spatial frequency

component of the data, and does not disturb the small scale signals.

When the input ISSA image contains significant striping (at width around 7', that is,
the distance of neighboring scan tracks, a much larger scale than the HIRES stripes), it is
necessary to first smooth the ISSA image with a large kernel (15') before doing the zodiacal
subtraction. Otherwise the calibrated detector data would retain the large distance scale
offsets, and the gain compensation destriping described in Section 3.2 would not be able
to estimate the gain variations correctly and would leave the wide stripes at different flux

levels.
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Figure 4: (a). Point source 116293-2422 in p Ophiuchus, no ringing suppression; (b). Same
field, using entropy prior for ringing suppression. Size of image is 1° x 1°. Peak flux in
(a) is 3749 MJy/ster, and 3329 MJy/ster in (b).

For validation of this procedure see comparison of surface brightness (output HIRES vs.

ISSA) in Section 4.4.

3.4. De-ringing Algorithm

For many image reconstruction algorithms, ringing artifacts (or “ripples”) appear when
a bright point source exists over a non-zero background. The mechanism of the artifact can
be understood as the Gibbs phenomenon (a sharp cutoff in high spatial frequency signal
incurs ripples in the position domain). Numerous approaches have been taken to reduce this
kind of artifact, such as that of regularizing operator in the linear restoration regime (e.g.

Zervakis and Venetsanopoulos (1992)), and maximum entropy methods (Press et al. 1992).
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A variant of the Log-Entropy MART 2 (De Pierro 1991)

B =i P (D - R (7)

was tested on IRAS data.

The ( f}kil))2 factor in the correction term indicates a Burg entropy metric in the image

space: the entropy loss (Burg) involved in changing one’s knowledge from f; to f; + Af; is

fi+Af fi+Af

AS = TR g g liT s
Zj: fi R
1

= L p@n) (®)
i i
for small Af;, so if we define the distance as y/|AS|, the metric tensor becomes
1/f2, ifj=j'
9j5' = ’ ) (9)
0, otherwise

The fj2 factor then acts to change the covariant gradient vector to contravariant. (See Skilling

(1986) for a similar analysis for the Shannon entropy.)

The Burg entropy metric effectively boosts the correction factor for brighter pixels,
so the bright point source is fitted better in the earlier iterations, which circumvents the

corruption of background propagated from the misfit near the point source.

The prior knowledge signified by using maximum Burg entropy estimation rule has
been discussed in Jaynes (1986) and Frieden (1985). According to Frieden (1985), the class
of optical objects described by the Burg entropy prior would tend to consist of a relatively
small number of randomly placed bright cells, the rest being dim, befitting the bright point

source scene we are concerned with.

Suppression of ringing may potentially lead to better photometry determination of the
point source through better background determination, and helps solve source confusion

problems, which are especially prominent in the Galactic plane.

3Multiplicative Algebraic Reconstruction Algorithm
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Although the above algorithm gave satisfactory result for some test fields (e.g. see Fig.
4), it suffers from several problems. First, boosting the correction factors for brighter pixels
biases the total flux towards higher value, and when this is combined with the destriping
algorithm, which essentially is a self-calibrating scheme, gives rise to bootstrapping and
uncontrolled growth of flux in the image. This problem can be solved by performing a
standard MCM iteration with no destriping and de-ringing applied, before writing out the
image. Richardson-Lucy’s good property of local flux conservation thus brings back the

image flux to the correct level.

Another more serious problem lies more deeply at the heart of the Burg iterative scheme.
Since the correction for fainter pixels is damped near bright ones, the Burg iteration is slower
at trimming the lobes of point sources. In addition, convergence of faint source near a bright

one is also suppressed, along with the formation of the ring.

For these reasons further research is needed to understand the behavior of the ring-
ing suppression algorithm, before it can be incorporated into the production algorithm. In
addition, we are investigating an adaptive data splitting method which aims to separate
background and point source fluxes during the reconstruction. The Image Space Recon-
struction Algorithm (ISRA, e.g. De Pierro (1991)) is also being studied for its potential in

ringing suppression.

4. OUTPUT VALIDATION

This section discusses the verification of output image properties.

To test the authenticity of high resolution features produced by the MCM algorithm,
Aumann, Fowler, and Melnyk (1990) compared the 60 pm HIRES image of M101 with the
IRAS Point Source Catalog and previously known H II regions (based on observations at
ultraviolet, infrared, and radio wavelengths). Also Rice (1993) examined the structural reli-

ability of HIRES maps for three test galaxies: M51, M33, and NGC 6822 using the following
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truth tables: (1) a far-infrared KAO map of M51, (2) optical light photographic images of
the three test galaxies, (3) four additional types of “high-resolution” maps constructed from
independent JRAS data, and (4) a simulated map of the radio emission of bright H II regions

in M33 constructed from a catalog of 20 cm radio continuum sources in the galaxy.

We’ve compared the gain compensation destriped images with the original HIRES im-
ages for the above fields (and numerous others), and have found good agreement in the
reconstructed features (except for the lack of striping). The following sections deal with val-

idation of gain offset recovery, source photometry, source positions, and surface brightness.

4.1. Validation of Gain Offset Recovery

To verify the gain offset estimation, a test trying to recover artificially introduced offsets
was carried out. A stripe free image was used to generate a set of simulated detector data,
and Gaussian-generated gain offsets were applied to the legs. This set of data was fed to the
uniform gain offset compensation program, and a scatter plot of the recovered vs. introduced

offsets is shown in Fig. 5.

The introduced offsets are Gaussian with standard deviation 0.12. The standard devia-
tion of residual offset after compensating for estimated offset is 0.024, indicating a factor of

5 reduction in striping amplitude (25 in power).

The reconstructed image is stripe free and visually indistinguishable from the input
image. This suggests that the uniform gain compensation is capable of its designed goals,
and that the residual striping seen in the real data (Fig. 3c) is in fact due to small gain

variations within the legs, lending support to the local gain compensation method.

4.2.  Validation of Source Photometry

To verify the photometric integrity of HIRES images using gain compensation destriping,

detector data processed with LAUNDR for the sources M51, M101, and ( Pictoris were fed
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Figure 5: Recovery of Artificially Introduced Offsets. vertical: log of recovered gain offset;
horizontal: log of introduced gain offset.

to the gain compensation algorithm and source fluxes at the 20th iteration were compared
with results from the standard MCM algorithm. The source fluxes were determined using
aperture photometry, by calculating the background level as the median of pixel fluxes in
an annulus around the source, and subtracting the background from the total flux within
the circle. The maximum percentage difference between the two sets of results is 5.4% (see

Table 2 for the comparison).

4.3. Validation of Source Positions

To validate the reprojection code and source positions in the output HIRES images, 39
sources near the Galactic plane were checked against the IRAS Point Source Catalog. A
total of 39 sources between Galactic latitude —1.7° and 1.7° (x two bands) were tested in
these longitude intervals: 119° - 129°, 215° - 223°, and 355° - 2°, with 21, 8, and 10 sources
in each interval respectively. All sources had fluxes > 1 Jy at 60 and 100 pym. Sources lying
within 10 arcmin of each other were excluded. Also some sources close to the Galactic center
were excluded, due to a large gradient in the background intensity. For each chosen source,
a circular area with radius 5’ was defined (centered at the PSC position), and the area’s flux
weighted centroid was taken as the HIRES point source position and compared against the
PSC position. For 60 um band, the distances between HIRES position and PSC position
have an average of 9.3"” and standard deviation 4.9”, and for 100 um, 8.3" + 4.4".



TABLE 2
Comparison of Source Photometry (Destriping vs. Non-Destriping)

20

source wavelength (um) preprocessing destripe? 1st (Jy) 20th (Jy) diff. at 20th iter. (%)
M51 60 br no 127.30 131.24 -
M51 60 br yes 125.53 126.63 -3.5
M51 60 do no 127.23 130.98 -
Mb51 60 do yes 127.23 130.25 —0.6
M51 100 br no 286.64 303.80 -
M51 100 br yes 283.28 295.11 —2.9
M51 100 do no 283.86 299.79 -
M51 100 do yes 283.86 296.05 —1.2
M101 60 br no 85.30 85.34 -
M101 60 br yes 81.72 81.76 —4.2
M101 60 do no 83.05 84.41 -
M101 60 do yes 83.08 84.43 +0.0
M101 100 br no 210.95 217.56 -
M101 100 br yes 207.92 209.97 -3.5
M101 100 do no 210.70 216.71 -
M101 100 do yes 210.71 214.37 -1.1
0 Pictoris 60 br no 22.03 21.84 -
[ Pictoris 60 br yes 22.10 20.96 —4.0
[ Pictoris 60 do no 21.58 20.96 -
0 Pictoris 60 do yes 21.51 21.38 +2.0
0 Pictoris 100 br no 10.19 10.95 -
0 Pictoris 100 br yes 11.96 10.86 —0.8
8 Pictoris 100 do no 10.45 9.90 -
[ Pictoris 100 do yes 10.42 10.43 +5.4

Note: br = baseline removal; do = destripe only, referring to the cross-scan
LAUNDR (not to be confused with gain compensation destriping).

offset done in



TABLE 3

21

Comparison of Surface Brightness

position

wavelength (um)  1st vs. ISSA

20th vs. ISSA

£000.5,40.5
g121.5,40.5
g126.5, —0.5
g218.5,—0.5

g000.5, +0.5
gl121.5,+0.5
g126.5, —0.5
g218.5,—-0.5

60
60
60
60

100
100
100
100

0.024 £ 0.064
0.017 £ 0.035
0.007 £+ 0.040
0.006 £ 0.033

0.031 £ 0.057
0.003 + 0.016
0.008 + 0.028
0.005 + 0.016

0.013 £ 0.100
0.008 £ 0.112
—0.010 £+ 0.119
—0.002 £ 0.080

0.020 £+ 0.083
—0.003 £+ 0.068
—0.004 £+ 0.081

0.000 £ 0.047

Comparison was done for 1° radius circles centered at positions shown in first column. Dif-
ferences are represented by mean + standard deviation of the quantity log(HIRES/ISSA).

4.4.

Validation of Surface Brightness

To test the surface brightness of zodiacal-subtracted HIRES images, they were rebinned

to ISSA geometry (using boxcar averaging) and compared pixel-by-pixel against the ISSA

images. The standard deviation of the pixel-by-pixel (1.5') difference is less than 6% for 1st
iteration HIRES vs. ISSA, and less than 12% for 20th iteration HIRES vs. ISSA (Table

3). The difference is larger at 20th iteration as the rebinned HIRES images are still sharper

than ISSA, while the 1st iteration HIRES images have a resolution similar to the 4’ to 5" of

ISSA.

Typical scatter plots of log

d.

HIRES
ISSA

IMPLEMENTATION

vs. ISSA intensities are shown in Fig. 6.

This section gives a detailed account of the technical aspects of a pipeline consisting of

coordinated processing on workstations and parallel supercomputers, which produces HIRES

images in mass quantities.
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1st iteration vs. |SSA 20th iteration H RES vs. |SSA
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Figure 6: Comparison of HIRES and ISSA Surface Brightness. 1° radius circular area
centered at g218.5, —0.5 (60 ym) were compared. Left: comparison of 1st iteration HIRES
vs. ISSA; right: comparison of 20th iteration HIRES vs. ISSA. Vertical: log of HIRES /
ISSA ; horizontal: ISSA intensity in MJy/ster.

5.1.  Quverview of the Production Pipeline

IRAS detector data, known as CRDD (Calibrated, Reconstructed Detector Data),
grouped in 7° x 7° plates, reside in the “Level 1 Archive”. The first step in the pipeline
for mass production of HIRES images is to extract data covering a specific field with “Snip-

Scan” and feed them into “LAUNDR” for calibration and various other preprocessing.

We take the 7° x 7° LAUNDRed plates and use the algorithm described in Section 3.3
to subtract the zodiacal background emission. This step requires the corresponding ISSA

image as supplement input (SmLAUN in Fig. 7).

Following the calibration and zodiacal subtraction, the detector files are broken into
1.4° x 1.4° fields, and reprojected into Galactic coordinates (from equatorial) if required,
with field centers separated by 1 degree (BrkDet in Fig. 7). The factor-of-two overlap is a
conservative insurance against discontinuity across field boundaries, as local destriping and

different flux bias level will be applied to each small field. 1.4° x 1.4° is also the maximal field

60
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ISSA images
(5’ res., dezodied)

IRAS Level-1
Archive Data
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(SnipScan & LAUNDR)
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Zodiacal Emission
(SmLAUN)

1.4°x 1.4° CRDD
with 1°centers
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Reconstruct Image
(YORIC on Paragon)

Figure 7: Outline of the HIRES Production Pipeline

7°x 7°CRDD
(calibrated and dezodied)

Reproject (Eq.->Gal.)
(BrkDet)

size with complete coverage allowed within one Level 1 plate, given the 2 degree redundancy
of the plates and arbitrary location and orientation of the small field relative to the Level 1

plate.

All operations described above are carried out on workstations, and the total processing
time for one 7° x 7° plate, one wavelength band, averages to 80 minutes on a Sun SPARC-
station 10, most of which is spent on decompressing and extracting the data from the IRAS

Level 1 Archive.

The small field (1.4° x 1.4°) detector files are then processed into HIRES images, which
is done on the Intel Paragon supercomputer. The CPU time taken for this stage is about
100 node-hours * for one wavelength band and one 7° x 7° plate. The next section gives a

detailed discussion for the parallelization of the Maximum Correlation Method.

The output images are stored to UniTree, a high capacity storage system on the Paragon

using HIPPI interface. About 200 megabytes of output data (images and auxiliary maps)

4Number of node-hours = number of computing nodes x number of hours of real processing time.
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Figure 8: Flow Chart of One Iteration in the Parallel Program

are generated for one band-plate.

5.2.  Parallelization

A flow chart of one iteration of the parallelized program is shown in Fig. 8.

Profiling ® a typical HIRES process showed that more than 95 % of the total execution
time was spent within the code which calculates the footprint and image correction factors

(see Fig. 8). In the parallel decomposition of the problem, each processor takes care of

footprints from a set of scanlines. The reasons for doing this are:

SProfiling stands for timing analysis of subroutines in the program.
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1. Small programming effort. The essence of the original HIRES architecture is left

untouched.

2. Footprints in one leg share the same response function grid, except for a translation,
which is basically the reason the original code processes the data one leg at a time. Keeping
the whole leg in one processor is therefore a natural choice, which minimizes local memory

usage.

3. As we discussed in Section 3.2, IRAS detectors have gain differences which are
especially prominent for the 60 and 100 ym bands. The gain offset can be estimated from

correction factors in the same leg, which came from the same detector.

Intermediate disk files for footprint data (D;) and response function grids (r;;) in the
sequential program are replaced by arrays held in memory of the processors (step 1 in Fig.
8), for sake of easier programming and reduction in I/O. This is feasible in the parallel

implementation as each processor now holds only a fraction of the entire data set.

Each node calculates the correction factor C;’s for its share of footprints (step 2), and
projects them onto the pixels covered by the footprints (step 3). A global sum over all
processors for the correction factor c;’s for each image pixel is performed at end of each
iteration (step 4), and the weighted average is taken, which is then applied to the image
pixel value (step 5).

Decomposition in the image domain was not carried out for the 1° x 1° field, eliminating
the need for ghost boundary communication, which would be significant and complicated to
code, due to the large size and irregular shape of the detector response function. This helped
maintaining the parallel code similar in structure to the sequential one, making simultaneous

upgrades relatively easy.

The efficiency of the parallel program depends on the scan coverage of the field processed.
The computation time is roughly proportional to the total coverage (i.e. total number

of footprints), while the communication overhead is not related to footprints and is only



26

dependent upon the image array size. So the efficiency is higher for a field with higher

coverage.

For a large field (e.g. 7° x 7°), the detector measurements are broken into 1.4° x 1.4°
pieces with 0.4° overlap. Each 1.4° x 1.4° field is loaded on to a subgroup of 8 or 16
processors. The overlap was chosen conservatively so that cropping the overlap after HIRES
ensures smoothness at the boundaries. Mosaicked images made from adjacent fields turn out

to be seamless to the human eye.

Currently the parallel program runs on the Paragon using Intel’s NX communication
routines under the OSF/1 operating system. It also runs on the Sandia-UNM Operating
System along with the provided communication library (SUNMOS, Maccabe, McCurley,
and Riesen (1993)), which is available on Paragon and nCUBE, and provides significant

performance increase.

The output images from the parallel computers are compared with those from the stan-
dard HIRES program running on a Sun SPARCstation. The differences are well within
the range of numerical round-off errors. At the 20th iteration, the standard deviation of

(NewImage - OldImage) / OldImage averages to about 10~%.

The global sum operation, which collects pixel correction factors from different nodes,

is the primary source of communication overhead in the parallel program.

The executable code was compiled and linked with a math library conformant to the
IEEE 754 standard, and the compiler options were fine-tuned to give the best execution
speed. For the 60 ym band of M51 (baseline removed data), a time comparison is shown in

Table 4.

A speed increase of about 7 times is achieved with 16 processors and 5 times with 8
processors for a 1° x 1° field. Equivalently a 64 square degree field can be processed using 512
nodes, with a speedup factor of 320. For production runs on the Paragon, we customarily

use 128 nodes to process 16 small fields simultaneously. Each band-plate would therefore
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TABLE 4
Speed comparisons for 60 ym band of M51

Sun SPARCstation 2 720 sec
Single node of the Paragon 640 sec
8 nodes of the Paragon 137 sec

take roughly 1.5 hours of real time. Various scripts are used to automate the data transfer

and program launching.

6. SUMMARY

The parallelization and algorithmic enhancements of the IPAC HIRES program have
been described. These efforts have enabled production of HIRES images by IPAC using the

Intel Paragon supercomputer.

We are now in the process of producing the IRAS Galaxy Atlas, a complete atlas of the
Galactic plane (£5° latitude) at 60 and 100 ym with arcminute resolution, as well as maps

of the Orion, Ophiuchus, and Taurus-Auriga clouds complexes.

We thank Tom Soifer, Joe Mazzarella, and Jason Surace for their involvement and
helpful suggestions during the project. We are grateful to George Aumann, John Fowler
and Michael Melnyk for developing the original HIRES program, especially John Fowler
who helped with the port of HIRES to the Intel computers by explaining the structure
and details of the program, and provided advice throughout the algorithmic developments.
Thanks are also due to Ron Beck and Diane Engler who handled numerous HIRES processing

requests and are running the Galactic plane image production.

This research was performed in part using the Intel Touchstone Delta and the Intel

Paragon operated by Caltech on behalf of the Concurrent Supercomputing Consortium.
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