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Abstract— We present a multiplicative algorithm for image
reconstruction, together with a partial convergence proof.
The iterative scheme aims to maximize cross log entropy be-
tween modeled and measured data. Its application to IRAS
data shows reduced ringing around point sources, compared
to the EM (Richardson—Lucy) algorithm.
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I. INTRODUCTION

OR many astronomical image reconstruction prob-

lems, ringing around bright point sources is a promi-
nent artifact when there is a non-zero background. In
Fourier language, the reconstruction process tries to make
the image agree with the true scene in the low spatial fre-
quency components (data constraint), without access to
the infinitely high spatial frequencies inherent in the point
source scene. The result is known as the Gibbs ringing.

Astronomical images are often taken with the intent of
making photometric measurements of objects in the field.
The ringing artifact hinders the increase of photometric
accuracy with smaller aperture, and numerous approaches
have been tried in the field of astronomical image recon-
struction to overcome the difficulty [3], [13].

While tackling the ringing problem in IRAS (Infrared
Astronomical Satellite, [2]) image reconstruction, it was
found using the image space reconstruction algorithm
(ISRA, [5]) gives more severe ringing than the Richardson-
Lucy algorithm ([14], [12]; known as EM in medical imag-
ing, [16], [11]; “EM” will be used hereafter). In light of the
fact that ISRA and EM can be integrated into the same
mathematical framework [7], it is natural to ask whether
there is an iterative scheme in the same family, which gives
even less ringing than EM.

The following sections present such an algorithm, to-
gether with a partial convergence proof and application
to IRAS data. The algorithm is a multiplicative one that
aims to maximize the cross log-entropy between observed
and modeled data.
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II. ALGORITHM

Consider the system of equations Az = b, where A4 is a
non-negative n x m matrix, and b € R™ is the noisy non-
negative data vector. If the modeling and the data were
exact, the system would have a non-negative solution. In
light of the noisy data and the modeling, the sense in which
the system Az = b is to be solved is that of minimum
negative “cross log entropy” (negative cross Burg entropy,
or Itakura—Saito distance), i.e. by solving

def bi bi
L(z) = izzl—log TAal; + TAzl;
subject to z > 0. (1)

minimize

The first thing to note is that if z* satisfies Az* = b, then
x = z* solves the problem. The second thing to note is that
L(z) is not a convex functional of z, since the logarithmic
term is concave. However, it is strictly convex on the set

C={x€R™:[Ax]; <2b,i=1,2,...,m}, (2)

since —log(a/t) + a/t is convex on 0 < t < 2a, for a > 0,
which is non-empty.

We look at two related algorithms
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If ' has positive components, then all the future z*

have all positive components as well. So expressions like
mf“ / mf are always meaningful. We denote the vector with

components ¥t /zk simply by z#+! /o



Cross log entropy maximization has been suggested by
Herman et al. [10] in tomography, together with the algo-
rithm

$k+1

;7= af{1- a4 + [ATPM)),

j = 1527""m’ (6)

where « is a relaxation parameter with the same dimension
as z;. The above algorithm’s convergence is still a subject
of study.

A. Derivation

As a first step in deriving the algorithms we show
LEMMA 1.
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for any vectors z and y with positive components.
ProoOF. First of all we note that by the strict concavity
of the logarithm

—log [j;]z + log [A;], = log[Ay]; —log[Az];
and so
= b; b;
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Also, there is equality here if and only if Az = Ay. Sec-
ondly, we write

[Ayl; ~ [Aa]i — [Ayls (1
Now observe that
Ayl _ g ([Aali _ o (IAG/}:

where U(t) = 1/t. Now ¥(t) is strictly convex for ¢ > 0,
and so by Jensen’s inequality
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with equality if and only if z;/y; is independent of j, for
those indices j for which a;; > 0. Consequently
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with equality if and only if x/y is the constant vector.
Adding (10) and (14) gives

i{[ATq]g ]'%}(yj —a;). (15)
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LEMMA 1 can be rewritten as
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Since we want to minimize the left side of (16), but are

unable to do this directly, let us minimize the right hand
side of (16). Assuming that we can do this by differenti-
ating the right hand side of (16) with respect to z;, and
setting this equal to 0 gives

\2
—ATH S + AT =0,
j=1,2,...,m, (17)

and so (16) suggests a way of achieving a new estimate of
vector z from y

[ATp];
[ATq];’
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z; =

i = (18)
For this reason we call inequalities like (16) “tendentious
inequalities” because they suggest algorithms, and much
more. De Pierro [8] calls this approach “majorizing func-
tions algorithm.”

An “accelerated” version of (18) can be derived if we
choose z; such that the second term in (16) equals zero

AT 2 +[Aq); =0,

j—1,2,...,m, (19)
which leads to
_ [ATp);
YT U ATy
i = 1,2,...,m. (20)

Applying (18) or (20) iteratively gives rise to ALGORITHM
I or ALGORITHM II.



B. Monotonicity Property

For ALGORITHM I, we have the following monotonicity
property from (16)
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It shows that L(z*) > L(z*F*!), unless ¥ = z**+!  and that
if * solves (1), then it is a fixed point of ALGORITHM 1.
For ALGORITHM 11, it is obvious from the derivation that

L(z*) > L(z**1) (23)

i.e. the negative log entropy never increases.

III. APPLICATION TO IRAS DATA
A. Relevant Information About IRAS

The IRAS survey was designed for the identification of
point sources, rather than as an imaging instrument. The
data were taken with rectangular detectors that scanned
the sky multiple times in “push-broom” fashion (e.g., see
Fig. 2). The satellite data are fundamentally in the form of
one-dimensional data streams for each detector, therefore
for any given field the data points do not lie on a regu-
lar grid and the point spread function is not translation
invariant.

The IRAS focal plane (shown in Fig. 1) included eight
staggered linear arrays subtending 30’ in width, two in each
of four spectral bands at 12, 25, 60, and 100 gm. Data rate
considerations forced the detector sizes to be much larger
than the diffraction limit of the telescope. The typical de-
tector sizes were 45 x 267, 45 x 279, 90 x 285, and 180 x 303
arcsec (full width at half maximum response, FWHM) re-
spectively, at the four wavelength bands.

This combination of focal plane, detector size, and scan
pattern optimized detection of point sources in areas of the
sky where the separation between sources was large com-
pared to the sizes of the detectors. Image reconstruction
techniques were later applied to obtain images with reso-
lution ~ 1’ from the IRAS data [1], [3], [4].

B. Convergence Speed

From test runs using IRAS data, it was found ALGO-
RITHM I and ALGORITHM II give quantitatively similar im-
ages, with ALGORITHM II converging roughly twice as fast
as ALGORITHM 1 (Table I). This can be explained by the

fact that corrections are small except in the first few iter-
ations.

Besides ALGORITHM II’s faster convergence speed, it also
gives better photometric integrity in the first few iterations
compared to ALGORITHM I. The first iteration result from
ALGORITHM 1I is just the usual coadded image, identical to
that from EM’s first iteration, assuming the zeroth image
is flat in both cases. ALGORITHM I however, because of the
square root corrections employed, gives images that have
absolute scales dependent on the magnitude of the zeroth
image (although the effect is washed out quadratically in
the later iterations).

These considerations led us to prefer ALGORITHM II in
the TRAS application, and we restrict our discussion to AL-
GORITHM 1I in the following sections (the result from AL-
GORITHM 1 being similar at twice the number of iterations
anyway).

C. Ringing Suppression

The algorithm was tested on several fields of the IRAS
data. For all cases, the resulted images showed weaker
ringing around point sources than images made with the
EM algorithm.

Fig. 3 shows a comparison of reconstructed images using
EM, ISRA, and the log entropy algorithm (ALGORITHM I1),
all at 20 iterations, plus a co-added image. The co-added
image in Fig. 3(a) is a simple average of detector fluxes
weighted by the response function, equivalent to the first
iteration image from EM, ISRA, and ALGORITHM 1I. The
reconstructed images ((b), (c), and (d)) show enhanced
resolution compared to the co-added image. The field cap-
tures one of the brightest stars in the sky, a Ori, ! at 60 ym.
The arc to the top-left of the star is a bow shock caused
by the motion of the star in the interstellar medium. In
the EM and ISRA images ((b) and (c)), the severe ringing
artifact disturbs the shape of the bow shock (the spurious
ring is slightly brighter than the bow shock). It is also ap-
parent that ISRA resulted in more severe ringing than EM.
The image from the new log entropy algorithm ((d)) shows
great improvement, effectively suppresses the ringing, re-
constructs the bow shock cleanly, and even recovers a hint
of the diffraction spikes around the bright star. The log
entropy image also gives a sharper profile of the star than
the EM image at the same number of iterations, with a
peak intensity (star) 1.4 times that of the EM image. The
maximum pixel intensity of the bow shock (~ 25 MJy /ster)
is about 1/150 of that of the star (3596 MJy/ster in the
log entropy image).

D. Validation Using Simulated Data

To validate the authenticity of the bow shock structure
and the result of reduced ringing, simulated data were con-
structed using the actual TRAS scan pattern and detector
response functions, and taking the log entropy image in
Fig. 3(d) as the sky brightness. The simulated data were

Lo Orionis, also called Betelgeuse, is the second brightest star in the
constellation Orion and marks the eastern shoulder of the hunter. It
is a red supergiant star approximately 600 light-years from the Earth.



then processed with the EM and the log entropy algorithm
respectively.

The resulted images are shown in Fig. 4. Again, the EM
image showed ringing similar to the corresponding image
in Fig. 3. The log entropy image is similar to the input
from which the simulated data were made (Fig. 3(d)), in-
dicating the log entropy algorithm is more consistent with
our preference 2 for this test case.

Also, the fact that the output images made from sim-
ulated data are similar to the ones made from real data
indicates the two sets of data contain comparable amount
of high spatial frequency signal, i.e. the input image that
went into the simulated data can be considered as well re-
solved.

E. Discussion

We use a set of notations more familiar to the field of
astronomical image reconstruction in this section (see Ta-
ble II).

In this set of notations, ALGORITHM II takes the form of

k. >-iriiDi /F
i Yurii/Fi

The ringing artifact can be seen as being caused by the
propagation of data misfit at the point source. The new al-
gorithm attenuates the propagation by the 1/F; weighting
factor, compared to EM:

it = (24)
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The 1/F; weighting results in better determination of the
background, as the data samples less affected by the point
source cast more influence on the background intensities.

In the reconstructed image, the point source has a finite
width profile due to the finite resolution achieved, while in
the true scene the point source mimics a delta function.
This causes the modeled data F; to have a longer “tail”
than the measured data D;. While trying to compensate
for the misfit (F; > D;), the correction factors push down
the pixels around the point source, giving the first dip in
the ripples. The dip then causes misfit further away from
the point source, which in turn results in the bright ring,
so on and so forth.

The reduction in ringing by the log entropy algorithm
can be traced to the concavity of L at large F;. Similar
to M-estimates in robust estimation (e.g., see [15]), the
derivative of L decreases in absolute value as Fj increases
(at fixed D;), i.e. the loss function curve flattens out at
large values of F;. Therefore the data points that have F;
mixing the blurred point source and the background (F; >
D;) are seen as “outliers”, and the corrections incurred on
the image pixels by these data points are weighted down.

Fig. 5 shows a plot of the negative log entropy and the
negative log Poisson likelihood as a function of Fj;. The

(25)

21t should be noted that the data alone do not favor one output
image or the other. Reduced ringing is preferred due to our prior
knowledge that point sources do not usually come with rings.

negative log Poisson likelihood is convex, while the negative
log entropy is concave for large values of F;.

Minimizing the negative log entropy functional corre-
sponds to maximum likelihood estimation from Gamma
distributions. The Gamma likelihood has a “fatter tail”
than the Poisson or Gaussian, making the log entropy al-
gorithm more tolerant of bright point source scenes than
the EM and ISRA, which are suitable for maximum Poisson
likelihood and least squares estimates [6], [9]. The choice
of Gamma likelihood (which is invariant under scaling of
D; and F;), has some justification for astronomical scenes,
where it is reasonable to regard two similar combinations
of model and data on different absolute scales as equally
likely a priori. It appears natural to use the Gamma likeli-
hood when the misfit between model and data is dominated
by the mixing of signal on different magnitude scales in the
model (like the bright point source case), instead of photon
counting statistics (Poisson) or read-out noise (Gaussian).

Quantifying the ringing magnitude (and the reduction
from EM to the log entropy algorithm) is not a trivial
task, as the ringing depends on such parameters as the
background intensity, the point source strength, and the
position of the data samples. First we look at the asymp-
totic behavior of minimum modeled data (F;) when the
point source strength is large, assuming the point source
sits on a flat background of fixed intensity.

Assume an image pixel j is covered by only two data
samples, 1 and 2. Both are centered far enough from the
point source, so that

Dy =D,

=/eYy mn; € B, (26)
J

where fp is the background intensity.

We then look at the dependence of F; and F5 on each
other when the iteration has proceeded near convergence.

Under the EM scheme, we would then have

’I"lle/Fl +7‘2jD2/F2 =T +’I“2j. (27)

While if the log entropy algorithm was used, we would

have
leDl/F12+7‘2jD2/F22 I’r‘lj/Fl +7’2]’/F2. (28)

A schematic comparison of (27) and (28) is shown in Fig.
6 (r1; and ro; were assumed to be equal in the plots).

We further assume sample 1 lies closer to the point source
than 2, and sample 1 covers part of the side lobe of the
point source in the reconstructed image. When the point
source is very bright, F; > B, and as can be seen from
Fig. 6, F> approaches the correct background flux B with
the log entropy algorithm, but only a fraction of B with
EM (reflecting the dip around the point source). We take
F, as an estimate of the minimum F;.

The different characteristic behavior of minimum F; was
replicated in simulations, using images reconstructed from
synthetic data. A point source with varying strength was
planted onto a constant background (30 MJy/ster), and the



actual IRAS scan pattern was run through the artificial im-
age, and a set of synthetic data was generated. After that
EM and the log entropy algorithm were used to process the
data separately. Table IV shows the comparison of mini-
mum modeled data F; after 100 iterations. For EM, the
minimum F; keeps decreasing with increasing point source
strength. And for the log entropy algorithm, the minimum
F; first decreases, then climbs back towards B as the point
source strength increases, showing good agreement with
the curve shown in Fig. 6.

In these simulations it was found the rings from the log
entropy algorithm have smaller sizes than those from EM
(which are in turn smaller than those from ISRA). Also, the
peak intensity of the reconstructed star is the highest with
the log entropy algorithm. These observations are consis-
tent with the fact that the log entropy algorithm requires
more high spatial frequency power in the image than EM
and ISRA.

IV. SUMMARY

Unlike some other ringing suppression schemes, the log
entropy algorithm does not require extra prior information
(such as point source position and/or strength) as input,
and does not require the fine tuning of parameters. It is also
structurally similar to EM and ISRA, making it very easy
to incorporate in existing image reconstruction software.
These advantages make it likely to be applied to a wide
range of problems where ringing artifact is a concern.
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TABLE I
CONVERGENCE SPEED COMPARISON

ALGORITHM 1  ALGORITHM II
ITter. L—n Tter. L-—n
10 201.54 5 205.97
20 191.15 10 192.13
30 187.42 15 187.93
40 185.12 20 185.48
50 183.39 25 183.68

TABLE II
NOTATIONS COMMONLY USED IN ASTRONOMICAL IMAGE
RECONSTRUCTION
Quantity Notation Used Notation Used
in Tomography in Astronomy
image pixel intensity x; fi
response function Aij rij
flux of measured data b; D;
flux of modeled data [Az]; Fi=),rijf;
TABLE IV

COMPARISON OF MINIMUM MODELED DATA. UNIT OF F;:
10~ '3W /cm?. BACKGROUND FLUX B = 4.76 x 10~ 13W /cm?.

Point Source Min. F; Min. F;
Magnitude (Jy) with Em with Log Entropy
10 4.72 4.73
102 4.51 4.59
103 4.01 4.37
10* 2.96 4.38

10° 241 4.54




TABLE III
COMPARISON OF DIFFERENT LOSS FUNCTIONS

Algorithm Function L OL/OF; 0?L/OF?

ISRA D; — F))? 2(F, — D)) 250

LOg Entropy —IOgDz/F‘z—}-Dz/Fl l/F,—DZ/FzQ —1/F12—|—2D1/Fz3 <0 (Fz large)
TABLE V

COMPARISON OF MAXIMUM PIXEL INTENSITY

Point Source Max. f; Max. f; Ratio
Magnitude (Jy) with EM (MJy/ster) with Log Entropy

10 4.63 x 10 491 x 10 1.06

102 7.16 x 102 1.08 x 103 1.51

10? 1.26 x 10* 3.01 x 10* 2.39

10* 1.63 x 10° 7.39 x 10° 4.54

10° 1.73 x 108 8.12 x 108 4.70
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Fig. 1. The IRAS Focal Plane. The numbered rectangles in the

central portion each represent the field of view of a detector,
filter and field lens combination. The filled-in detectors were
inoperative while the cross-hatched detectors showed degraded
performance during the mission. (Adapted from Figure II.C.6,

2].)
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Fig. 2. IRAS Scan Pattern Near a Ori at 60 ym. FEach black
dot represents the center point of a data sample. The cross at
the lower-right corner shows the typical FWHM of the detector
response function. Angular scale is 0.5° on each side.
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Fig. 5. Comparison of the Negative Log Entropy and the Negative
Log Poission Likelihood.
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Fig. 6. Comparison of the Dependence of Modeled Data. Solid curve:
log entropy case, F» approaches B when F1 is large; Dashed
curve: EM, F5 approaches B/2.
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Fig. 3. Comparison of Reconstructed Images Using EM, ISRA, and the Log Entropy Algorithm. (a): co-add (or weighted average) of
detector fluxes; (b), (c): EM and ISRA, severe ringing around the bright star is present, and the arc (bow shock) to the top-left of the
star is disrupted; (d): the log entropy image suppresses the ringing and reconstructs the bow shock cleanly. Angular scale is 1° on each
side. The brightest pixel in the bow shock has intensity ~ 1/150 of the peak intensity of the star. The spurious ring in the EM image is

slightly brighter than the bow shock.
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Fig. 4. Comparison of Reconstructed Images From Simulated Data. (a): EM reconstruction; (b): log entropy reconstruction. The results
verify the consistency of the log entropy algorithm.



