

New Young Stars in the North America Nebula Complex (with a special emphasis on SOFIA results!) Luisa Rebull

Spitzer Science Center

Including results from Guieu et al. 2009, ApJ, 697, 787; Rebull et al. 2011, ApJS, 193, 25

Outline

- FAST overview of the North America Nebula +Pelican Nebula complex
- FAST (& pretty!) overview of our Spitzer data, plus a 4-slide summary of two papers
- More on the Gulf of Mexico cluster
- SOFIA observations and results
- SOFIA hopes

North America and Pelican Nebula Complex

beak

head

IC 5070

Gulf of Mexico Florida

Mexican Riviera NGC 7000

LDN 935

APOD, 2000 May 1

belly

Why study "yet another SFR"

- (Because it's beautiful?)
- Environment matters mass distribution, rotation distribution, disk lifetimes, ...
- Orion is the prototypical SFR of its kind.
- At only ~520 pc, the North America Nebula complex is the next closest high-mass SFR.
- Is it different?

What is this region?

- The North America Nebula (NGC 7000) and Pelican Nebula (IC 5070) complex (NAN) appears to exhibit "mixed mode" star formation, eg., low and high mass, clusters and distributed populations.
- ~10⁵ Msun in molecular gas, ~10⁴ Msun in stars (?)
- Ages <~1 Myr to several Myr (?)
- ~520 pc away, only ~70 articles in ADS. (ONC is at 470 pc, and 400+ articles in ADS)
- Why hasn't it been better studied to date?
- It's in the galactic plane (b~-0.53 deg) and along a spiral arm!
- Contamination is ...problematic. IR (Spitzer) helps!

Earlier NAN studies

- Between 1949 and 2009, deliberate studies of the NAN have yielded prior identifications/ data of some sort for ~3600 objects here.
- ~200 are identified as YSOs.
- The rest are either known contaminants (AGBs) or just "things in this direction."

Some earlier surveys

- 2MASS (Cambresy et al. 2002) millions of sources, Av up to 30(!), several subclusters, contamination rate up to 1900 stars/sq deg(!).
- To separate YSOs from contaminants, need IR!
- IRAS covered most of the sky ... except for a few missing wedges, including here!
- MSX, Akari, & WISE ... But low spatial resolution and very shallow.
- Need high spatial resolution, deep IR obs over a large region to look for YSOs. (Spitzer, and in portions, SOFIA!!)
- Need optical data to help weed out contaminants KPNO (BVI); Vilnius (UPXYZVS); IPHAS (r',i',Ha). SDSS (ugriz) has some coverage; UKIDSS (JHK), deeper than 2MASS!

Our Spitzer Data

- IRAC (3.6, 4.5, 5.8, 8 microns) and MIPS (24, 70, 160 microns) maps of ~7 sq. deg.
- Obtained 2006, 2008
- ~0.5 million sources!
- Most of those have fluxes at >1 IRAC band
- 4300 MIPS-24 sources
- 97 MIPS-70 sources
- Images are very complex ...

6 bands: POSS + IRAC (3.6-8 um)

4 bands: IRAC (3.6-8 um)

5 bands: IRAC (3.6-8 um) and MIPS (24 um)

Multiwavelength movie <u>here</u>

Infrared (IRAC)

Visible (DSS/D. De Martin)

New Views of the North America Nebula NASA / JPL-Caltech / L. Rebuil (SSC/Caltech)

Spitzer Space Telescope • IRAC • MIPS ssc2011-03a

Visible/Infrared (DSS/IRAC)

Now, how do you find the YSOs?

- Over the whole field, IR-driven color selection, because we will pick out things with (apparent) IR excesses against the (substantial) background.
- Many color selections in the literature. None perfect. *Always* will have contamination.
- Use the known YSOs and known contaminants (here and elsewhere) to delineate properties.
- Then use ancillary data to continue to weed.

Lots of checks

- Is it in the 'right place' in [3.6] vs. [3.6]-[24]? Is it bright or faint?
- Is it in the 'right place' in K vs. K-[24]? Is it bright or faint?
- Is it seen at 70 um?
- Did someone find it before using other bands?
- Was it selected using our "just IRAC" selection (G09)?
- Is it near other YSOs? REALLY near other YSOs (clustered)?
- Is it in the right place in an optical color-mag (I/V-I, r' vs. r'-i') or color-color (r'-Ha vs. r'-i') diagram?
- ...Plus a manual sanity check (location, appearance in image, SED shape).
- (and then, even still, need a spectrum to confirm)

Rebull et al. 2011, ApJS, 193, 25; Guieu et al. 2009, ApJ, 697, 787

Yields ...

- (out of ~0.5 million sources)
- ~1300 MIPS-selected YSOs
- ~800 IRAC-selected (but not MIPS-recovered) MORE YSOs. [MIPS is effectively shallower.]
- X 2076 new YSOs. (~10x more than previously known!)
- Only ~half of the previously-identified YSOs recovered rest are saturated or do NOT have an IR excess!
- ~Half of the ~2000 are Class II YSOs.
- 3 clear clusters appear: Gulf of Mexico, Pelican, Pelican's Hat

Baby Stars and Jets Near the North America Nebula Spitzer Space Telescope • IRAC • MIPS

NASA / JPL-Caltech / L. Rebull (SSC/Caltech)

ssc2011-03c

March 2012

+ or x or Δ =

🕅 = 2MASS

= IRAC

= MIPS

optical

¢

X

Rebull et al. 2011, ApJS, 193, 25 ₂₈

March 2012

Gulf of Mexico

- Av peaks at ~30 here (from 2MASS, low-res).
- Av~10 contour matches the cluster contour well.
- 30' across at widest part; 4.5 pc.
- 375 members of cluster!
- Most of the NAN 70 um point sources here.
- Many very embedded things.
- 11 previously known YSOs, all in North.
- Also jets, PTF outburster.

Recent NAN data

- Need to confirm, classify candidates: KPNO, Palomar spectroscopy obtained, being reduced and classified. More needed.
- FCRAO data obtained 1998 (Carpenter & Hillenbrand), messy (complex)!
- Folding in SDSS, UKIDSS data (source confusion means have to do this carefully).
- PTF monitoring (Hillenbrand et al.) 2010, 2011, 2012; two outbursters already published.
- Herschel observations (hopefully) as part of HiGal3 (Noriega-Crespo et al.).
- SOFIA (FORCAST) flights 5/19, 5/27!! (BaSc 4 and 7; 24.2 and 34.8 microns)

Northern Gulf

Bright enough for SOFIA, and can benefit from higher spatial resolution

Going-in Observing Plan

1000

Full MIPS image; planned FORCAST observation FOVs in green March 2012

MIPS image, truncated to the expected FORCAST sensitivities.

24 µm (MIPS)

24.2 µm (SOFIA)

24 µm (MIPS)

24.2 µm (SOFIA)

SOFIA sources indicated in blue...

24 µm (MIPS)

24.2 µm (SOFIA)

Hmmm...

Seems to really be there in SOFIA...

...But really not bright (as a point source anyway) in MIPS

Green squares = in the Spitzer catalog

PTF 10qpf

JHK composite, 5' on a side.

Starting to see familiar pattern in the stars...

More stuff is changing

SOFIA recovered the FU Orionis object

Post-outburst with SOFIA

HBC 722

Pre-outburst with MIPS

(brightest at longer wavelengths, and the one to which I assigned all the 70 um flux earlier!)

...And we only successfully observed one of our two fields 🕅 Cy1 proposal to do three bright patches in NAN

Full MIPS image

MIPS image, truncated to the expected FORCAST sensitivities.

IRAS-25 MS

MSX-E (21um)

WISE-4 (22 um)

MIPS-1 (24 um)

MIPS-24, different stretch.

What will we see with SOFIA, if we get the time?

Conclusions

- The NAN provides a similar laboratory to Orion and not that much further away, enabling tests of environmental effects.
- Spitzer data have enabled tremendous headway in identifying the YSO population in this complex, increasing the candidate YSOs by a factor of 10 (~200 X ~2000).
- There are three sub-clusters here, including clumps of extended emission and/or bright sources too close together for Spitzer to easily separate.
- SOFIA can resolve these confused sources, provide the longest wavelength SED point in several cases, & contribute to our understanding of the YSOs in this region.