
MIPS Ge Pipeline Description Document

Version 1.1 - August 2010

1. Introduction

This document is intended for science users of the Multiband Imaging Photometer for

Spitzer (MIPS) as a guide to the data processing pipelines developed by the Spitzer Science

Center. For a description of the arrays and the MIPS instrument, please refer to the MIPS

chapter in the Spitzer Observer’s Manual and the MIPS Data Handbook. Additional infor-

mation relating to the data reduction algorithms employed in the various pipeline modules

is also presented in Gordon et al. 2005 (PASP, 117, 503).

2. The MIPS Ge Pipelines

2.1. Overview

The particular pipeline and calibration files that are chosen for a given data set depend

on the channel number (CHNLNUM = 2 for 70µm, CHNLNUM = 3 for 160µm) and the

exposure type (header keyword EXPTYPE). The different pipeline possibilities are:

EXPTYPE = scn =⇒ Scan data, normal science pipeline is run.

EXPTYPE = pht =⇒ Photometry data, normal science pipeline is run. If EXPTYPE=pht

and FOVID > 117, then the data are 70µm FINE-scale observations and the appropriate

calibration files are chosen.

EXPTYPE = sed =⇒ 70µm SED data, SED pipeline is run.

EXPTYPE = tpm =⇒ Total power mode (TPM) data, TPM pipeline is run.

EXPTYPE = d2a =⇒ DARK data, DARK pipeline is run.

EXPTYPE = sfl =⇒ Illumination Correction (IC) data from scanning, IC pipeline is run.

EXPTYPE = pfl =⇒ IC data from photometry, IC pipeline is run.

EXPTYPE = ffl =⇒ IC data from FINE-scale photometry, IC pipeline is run.

EXPTYPE = dfl =⇒ SED IC data, IC pipeline is run.

EXPTYPE = tfl =⇒ Total power IC data, IC pipeline is run.

In the following we outline the science pipelines that produce basic calibrated data

(BCDs). BCD processing has two main steps: (1) calculation of the slope of the data

ramp (SLOPER) and (2) calibration of the slope image (CALER). MIPS-Ge raw data are

comprised of data ramps of 24, 32, or 80 non-destructive reads (for 3, 4, 10 MIPS-sec data

collection events (DCEs) respectively, read every 1/8 sec). The cdf file controlling “SLOPER”

processing is MIPS70/160 SLOPE 0.nl. The “CALER” processing is controlled via the cdf

file MIPS70/160 FLUXCAL 0.nl.

– 2 –

2.2. MIPS Ge Science BCD Pipeline

An overview of the various steps in the pipeline processing is presented in Figure 1. The

individual pipeline modules are described below. The namelist input block for each module

is also provided.

Fig. 1.— MIPS Ge:Ga Pipeline Overview.

– 3 –

2.2.1. TRANHEAD

The tranhead pipeline module translates and simplifies the DCE fits file header delivered

by JPL/FOS in Multimission Image Processing Laboratory (MIPL) format to a standardized

format for use in the pipelines. The data remain untouched by this process.

The instrument telemetry data stored in the MIPL header under their coded telemetry

keywords are translated into alphanumerical mnemonic labels using a keyword dictionary.

Derived keywords, such as the total integration time (EXPTIME), are computed from the

data in the MIPL header and added to the raw.fits header. In addition, entries from the

SSC operations database are written to the raw.fits header, e.g. the observer’s name (header

keywords OBSRVR) and the program ID (header keyword PROGID).

&TRANHEADIN

Comment = ’MIPS70/160 tranhead namelist block NO STRING SUBSTITUTIONS’,

CentralFraction1 = 1.0,

CentralFraction2 = 1.0,

HeaderCommentFlag = 2,

CE Side = 1,

&end

2.2.2. SWAP

The swap module is only part of the 160µm data processing pipeline. It reorders the

pixel locations from the 28 × 2 input array to a 20 × 3 array layout. The 20 × 3 layout

correctly represents the footprint of the array on the sky.

&SWAPIN

Comment = ’Generic namelist file for swap, default values.’,

FITS Image Filename1 = ’tranraw.fits’,

FITS Out Filename = ’transwap.fits’,

Log Filename = ’stdout’,

&end

2.2.3. IMFLIPROT

The module imfliprot performs an image reorientation to ensure that the arrays have

the expected FOV orientation. For both the 70 and 160µm array a flip about the vertical

axis is applied.

&IMFLIPROTIN

– 4 –

Comment = ’imfliprot namelist block.

Log Filename = ’stdout’,

Comment = ’Flip: 1 = Flip, 0 = No Flip (in x, top left pixel is reference)’,

Flip = 1,

Comment = ’Rotate: 0, 90, 180, 270 in clockwise rotation’,

Rotate = 0,

&END

2.2.4. CVTI2R4

The cvti2r4 module converts the input integer data values into real values. The module

also creates the initial bmask and dmask files and marks missing data and saturation in

the dmask. The bmask is set to 1 for stim DCEs (STMFL 70, STMFL160 > 0) and 0 for

non-stim DCEs (STMFL 70, STMFL160 = 0.0).

&CVTIN

DataHi = 0,

DataLo = 1/2, for 70/160

SatHi = 65500/61000, for 70/160

SatLo = 10,

StimHi = 4,

StimLo = 4,

DataHi = number of reads to ignore at end of non-stim DCE

DataLo = number of reads to ignore at start of non-stim DCE

SatHi = DN value for high saturation (set dmask to ignore for higher DN’s)

SatLo = DN value for low saturation (set dmask to ignore for lower DN’s)

StimHi = number of reads to ignore at end of stim period DCE. The last 4 frames are taken

after the stim is turned off.

DataLo = number of reads to ignore at start of stim DCE (ignore stim warm-up period).

2.2.5. SANITY CHECK

Before the data proceed through the pipeline, they are checked to ensure that they are

the type of data expected. In particular, header keywords are checked against their expected

values, e.g. the dimensions of the data arrays for a specific channel number (see the tables

below). At this point in the pipeline, the 70/160µm data are data cubes with the x and y

dimensions corresponding to the size of the array (32×32 pixel and 20×3 pixel, respectively),

– 5 –

and the third dimension determined by the exposure time, i.e each sample that is read is

stacked in succession to form a data cube with 24, 32, or 80 layers. Following one x,y pixel

through the cube will reveal the data ramp for that pixel.

&SANITYDATATYPEIN

FITS Image Filename = ./tranhead.fits,

Data In Filename Data1 In = ./cdf/MIPS70/160 SANCHK 0.tbl,

Data In Filename Data2 In = ./cdf/MIPS70/160 SANINT 0.tbl,

Data Out Filename Data1 Out = ./qa/sanity out.tbl,

Data Out Filename Data2 Out = ./qa/interp out.tbl,

Log Filename = ’stdout’,

&end

MIPS70/160 SANCHK 0.tbl:

For MIPS Ge Slope Estimate Thread

Description for the column:

column ”keyword” specifies the KEYWORD in FITS header to look up.

column ”valid test” specifies the criteria for the validation, i.e.

the criteria not to set up invalid flag.

column ”valid value” specifies the values for valid test.

| index | keyword | test | value |

1 INSTRUME = MIPS

2 NAXIS = 3

3 NAXIS1 = 32

4 NAXIS1 = 20

5 NAXIS2 = 32

6 NAXIS2 = 3

7 NAXIS3 > 2

8 CHNLNUM = 2

9 CHNLNUM = 3

10 DCENUM ≥ 0

11 EXPID ≥ 0

12 PIPENUM ≥ 300

13 PIPENUM < 400

14 MISSDATA = T

15 MANCPKT > 0

MIPS70 SANINT 0.tbl

For MIPS Ge Slope Estimate Thread

Description of the columns:

– 6 –

column ”status” specifies the the condition user wants to set.

column ”criteria” specifies the criteria for each status

| status | criteria |

normal 1 && 2 && 7 && 10&& 11

ok-NAXISs (3&&5) ‖ (4&&6)

ok-chnlnum 8 ‖ 9

ok-pipenum 12 ‖ 13

2.2.6. SATURATION

The saturation module sets bits in the dmask for saturated samples inside the data

cubes, i.e. samples with DN values above the values given in the MIPS70/160 SAT.fits

calibration file. Saturation can be set to different values for different pixels. For MIPS70 the

saturation level for all pixels is set to 65500 in the calibration file, for MIPS160, the level is

61000 for all pixels.

&SATURATION

Comment = Saturation namelist file with default values.

Comment = Input charge ramp in dn,

FITS In Filename1= ./dce.fits,

Comment = Saturation level in dn for each pixel,

FITS In Filename2= ./cal/MIPS70/160 SAT.fits,

FITS In Filename3= ./dmask.fits,

FITS Out Filename1=qa/sat.fits,

FITS Out Filename2=./dmask sat.fits,

Log Filename = ’stdout’,

Readnoise = 140/800, for 70/160

A2D Bias = 0,

&end

2.2.7. ELECNL

This module corrects for the effects of electronic non-linearity (not to be confused with

flux non-linearity effects). An electronic non-linearity calibration is applied to the ramps

as a function of DN using the MIPS70/160 ENL.fits calibration file. The non-linearity is

corrected by multiplication of the DN value of each sample by a factor obtained from a

lookup table. The non-linearity is a function of DN value only. A cubic spline is used to

interpolate between the calibration table values.

– 7 –

&MIPSNLSPLINE

Comment = ”Applies nonlinearity calibration to charge ramp samples”,

RampIn= ./dce.fits,

RampIn unc = NONE,

RampOut = ./enlcorrd.fits,

RampOut unc = ./enlcorrd unc.fits,

SplineTable fits = ./cal/MIPS70/160 ENL.fits,

Log Filename = ’stdout’,

&end

2.2.8. RESET

The reset module checks for extra resets in the data ramps via header keywords and sets

the dmask appropriately. The reset will occur after the frame given by RSTP160/(2COADD)

for 160µm and RSTP 70/(2COADD) for 70µm.

&RESETIN

Comment = Mark dmask with position of reset segments.’,

FITS Image Filename1 = ’tranhead.fits’,

dmask Filename = ’./dmask sat.fits’,

dmask Out Filename = ’./dmask rhit.fits’,

number pixels to ignor = 4,

reset period keyword = ’RSTP 70’/’RSTP160’,

coadd keyword = ’COADD’,

Log Filename = ’stdout’,

&end

2.2.9. RADHIT

The module radhit checks for radhits in the ramps and sets the dmask at the location

of radhit(s). The SSC pipeline identifies ramp discontinuities using a maximum likelihood

technique (Hesselroth et al. 2000, Spaceborne Infrared Remote Sensing VIII, SPIE Confer-

ence Proceedings, 4131, 26). Radhits are assumed to cause discontinuous jumps in charge

at particular samples. The radhit detector first finds the sample number with the highest

likelyhood of having a radhit, then uses Bayes Rule to compute the probability that a radhit

actually occurred there. In order to account for readout electronic glitches which may induce

negative jumps, both positive and negative discontinuities are considered. The probability

is then compared to a threshold and if a radhit is found, the algorithms are performed again

on the ramp segments on each side of the jump. The process is iterated until the maximum

– 8 –

number of radhits are detected, no radhits are found or there are no segments long enough

(4 samples) to perform the algorithms. The radhits are tracked by setting bits in the dmask

file. The module uses input readnoise and radhit statistics. It is possible to provide an in-

put readnoise calibration file which takes priority over the readnoise namelist parameter (to

account for possible pixel-to-pixel readnoise variations, e.g., MIPS70/160 rnoise.fits). One

can tune up RADHIT separately for stim data (RADHITSTIM block) and non-stim data

(RADHIT block).

&RADHIT

Comment = Generic namelist file for radhit default values.,

Comment = DEI,

FITS In Charge Ramp = ./enlcorrd.fits,

FITS In dmask = ./dmask rhit.fits,

FITS In PMASK = ./cal/MIPS70/160 PMASK.fits,

FITS In Readnoise = ./cal/MIPS70/160 rnoise.fits,

FITS Out Radhit Probs = NONE,

FITS Out Radhit Samples = qa/rhits.fits,

FITS Out Radhit Mags = qa/rhmags.fits,

FITS Out Slope = NONE,

FITS Out dmask = ./dmask rhit.fits,

Log Filename = ’stdout’,

Readnoise = 100/700,

NominalRHMag = 5,

RHPriorProb = 0.01,

DeclThresh = 0.99,

MaxNumHits = 16,

NumSamplesMax = 40,

Gain = 7.1,

NumDeclareBadAfterRH = 4/100,

ThreshDeclareBadAfterRH = 10000/5000,

&end

&RADHITSTIM

Comment = RADHIT namelist block- stimflash only ,

Comment = DEI,

FITS In Charge Ramp = ./enlcorrd.fits,

FITS In dmask = ./dmask rhit.fits,

FITS In PMASK = ./cal/MIPS70 PMASK.fits,

FITS Out Radhit Probs = NONE,

FITS Out Radhit Samples = qa/rhits.fits,

FITS Out Radhit Mags = qa/rhmags.fits,

FITS Out Slope = NONE,

– 9 –

FITS Out dmask = ./dmask rhit.fits,

Log Filename = ’stdout’,

Readnoise = 100/800,

NominalRHMag = 5/6,

RHPriorProb = 0.01,

DeclThresh = 0.99,

MaxNumHits = 16,

NumSamplesMax = 40,

Gain = 7.1,

NumDeclareBadAfterRH = 4/100,

ThreshDeclareBadAfterRH = 10000/20000,

&end

Readnoise = input readnoise in electrons

NominalRHMag = Typical RH mag in terms of × Readnoise (e.g. 5×readnoise)

RHPriorProb = Prior probability for a sample to be hit by a RH.

DeclThresh = Probability threshold for declaration of RH.

MaxNumHits = Maximum number of RHs in ramp before stop searching for RHs.

NumSamplesMax = Maximum number of samples to use in calculation. Longer ramps (e.g.,

10sec = 80) are broken into two separate ramps to search for radhits. This is done for speed

consideration; since RADHIT inverts a probability matrix the processing goes with ∼ n2

instead of n. Breaking into 40 samples does not affect the module’s ability to find radhits.

Gain = Conversion between DN to electrons, 7.1e-/DN.

NumDeclareBadAfterRH= Number of reads to ignore after a strong radhit with magnitude

larger than ThreshDeclareBadAfterRH.

ThreshDeclareBadAfterRH = DN threshold for declaring reads bad after RH.

2.2.10. SLOPE

The slope module calculates a linear fit to all slope segments with at least four consecu-

tive good reads as indicated by the dmask. Standard linear regression is performed and the

scatter of the fit provides the uncertainty for the segment. While the minimum number of

good reads can in principle be set to lower values by adjusting Min Num Samples, the radhit

module requires four samples to properly check the end-points of the ramps.

&SLOPE

Comment = Slope namelist file with default values.,

FITS In Filename1= ./enlcorrd.fits,

FITS In Filename2= ./dmask rhit.fits,

FITS In Filename3= ./enlcorrd unc.fits,

FITS Out Filename1= ./currents.fits,

– 10 –

FITS Out Filename2= NONE,

FITS Out Filename3= NONE,

FITS Out Filename4= ./currents unc.fits,

Log Filename = ’stdout’,

Min Num Samples = 4,

Layer = 1,

Comment = Convert from MIPS Ge samples to seconds,

Constant = 7.62939453125,

&end

2.2.11. FUSION

The multiple slopes for each pixel calculated in the previous module are combined into

a single slope value by the fusion module. The fusion module calculates a noise-weighted

average slope image from the fitted segments based on the empirical errors estimated from

the scatter of the data within the ramp segments. For example, for two slope segments,

s1±u1 and s2±u2, the final slope image is wt1×s1 + wt2×s2 where wt1 ∼ 1/(u1)2, wt2

∼ 1/(u2)2, and the slope uncertainty is ∼ ([1/u1]2 + [1/u2]2)−0.5.

The output of fusion is a two dimensional image and an associated uncertainty image.

&FUSION

Comment = Generic namelist file for fusion default values.,

FITS In Filename1= ./currents.fits,

FITS In Filename2= ./currents unc.fits,

FITS In Filename3 = ./bmask dce.fits,

FITS Out Filename1= ./current.fits,

FITS Out Filename2= ./current unc.fits,

FITS Out Filename3 = ./bmask.fits,

Log Filename = ’stdout’,

Max Num Values = 1,

Negative Rejection = 3,

Outlier Rejection = 20,

&end

Negative Rejection = threshold ”sigma” level at which negative slopes are ignored. If

the slope measurement is < −1∗Negative Rejection, then this slope segment is not included

in the slope calculation.

Outlier Rejection = threshold ”sigma” level required for including segments in the slope

calculation. Some strong radhits can significantly change the responsivity of a detector such

that the remaining part of the ramp should be ignored. If the slope measurement after the

– 11 –

radhit is more than Outlier Rejection × sigma different than the measurement before the

radhit, the segment after the radhit is ignored. In general, ”sigma” for the FUSION module

significantly underestimates the true uncertainties in the slopes, so a higher Outlier Rejection

parameter is needed than would otherwise be expected.

2.2.12. MASKWRITE

This module copies information from the pmask and dmask to the bmask. Information

from the dmask to the bmask is copied in cases where data within a ramp are missing,

saturated, or contain a radhit. This is the last step in the “SLOPER” part of the pipeline.

ged SAMPSMISSING → geb SAMPSMISSING

ged SATURATEHI → geb SATURATED

ged RADHIT → geb RADHIT

gep BADHALF → geb BADPIX

gep BADPIX → geb BADPIX

gep NOISY → geb NOISY

where ged =dmask, gep=pmask, and geb=bmask.

&MASKWRITE

Comment = maskwrite namelist file with default values.,

FITS In Filename1= ./dmask rhit.fits,

FITS In Filename2= ./bmask.fits,

FITS In Filename3= ./cal/MIPS70 PMASK.fits,

FITS Out Filename1=./bmask.fits,

Log Filename = stdout,

Comment = bits when any set in pmask set all corresponding bits in bmask,

pmask from 0 = 0x0000,

bmask to 0 = 0x0000,

pmask from 1 = 0x0000,

bmask to 1 = 0x0000,

pmask from 2 = 0x0000,

bmask to 2 = 0x0000,

pmask from 3 = 0x0000,

bmask to 3 = 0x0000,

&end

– 12 –

2.2.13. INTERP

This module computes the stim response function by interpolating between stim-minus-

background measurements. The input fits file to interp is a multi-layer cube consisting of

the previously computed slope estimates at each DCE (layer) for each pixel for a given AOR.

Interp extracts the stimflash data based on the information in the bmask. The stimflash

slope is subtracted from that of the previous DCE (which has the same background) to

yield the stimflash-minus-background slope. The different stimflash-minus-background slope

measurements for all the stims are then interpolated as a function of time (SCLK OBS) to

provide the stim response function for each pixel of each DCE.

Note that there are separate namelist blocks depending on the observing mode, such

that it is possible to tune up processing based on data types. The modes are determined via

the header keywords EXPTYPE and FOVID/APERTURE. The different ”modes” are:

SCAN = scan mode science (SCI) observations, EXPTYPE=scn

PHT = default-scale SCI photometry, EXPTYPE=pht

FINE = fine-scale SCI photometry (only applicable for 70µm)

Science FINE set for EXPTYPE=pht + FOVID> 117

SED = SED mode SCI observations (only applicable for 70µm), EXPTYPE=sed

TPM = TPM mode SCI observations, EXPTYPE=tpm

DARK = For DARK pipeline processing, EXPTYPE=d2a

As an example, the namelist block of the SCAN mode interp input is shown here:

&INTERP SCAN

Comment = ’Generic namelist file for interp- SCAN ’,

FITS In Filename = ’current.fits’,

FITS Time = ’SCLK OBS.fits’,

FITS Sigma In Filename = ’current unc.fits’,

FITS Bmask In Filename = ’bmask current.fits’,

FITS Out Filename = ’interpstim.fits’,

FITS Err Out Filename = ’interpstim unc.fits’,

FITS BMask Out Filename = ’bmask interp.fits’,

Log Filename = ’stdout’,

Fit = 0,

StimVariability = 0.05,

CauchyThreshold = 0.4,

ApproxThreshold = 0.2,

Comment = ’ignore second stim in a double stim sequence’,

IgnoreDCE0Stim = 1,

– 13 –

Comment = ’Method options: S = spline (global fit)’,

Comment = ’X for weighted linear least squares’,

Comment = ’P = piecewise linear (connect the dots)’,

Comment = ’L = least squares (Order) polynomial fit (do not use L yet)’,

Method = S,

IntegralWeight = 0,

NBracket = 2,

Power = 1,

Comment = ”Flag the pixels for X seconds after stim with the mask”,

FlagAfterStimTime = 11,

FlagAfterStimMask = 32,

Comment = ” mask bit to mark pixels with extrapolated stims ”,

ExtrapolatedMask = 64,

Comment = ” mask bit meaning stim or background not present in data set ”,

MissingStimMask = 0,

Comment = ” mask bit meaning default stim came from a file ”,

DefStimMask = 0,

Comment = ”mask bit meaning no stims at all. interpstim=1 for all pixels ”,

MissingAllStimsMask = 0,

&end

StimVariability = % error associated with individual stim measurements. A 5% error

gives reasonable errors for the final BCDs/mosaics.

Method gives the interpolation method. Spline (S) is used online. ”P” simply linearly

interpolates between measurements. Only the ”S” and ”P” methods have been validated.

Additional options are available, but have not yet been fully tested. ”X” is a weighted linear

fit which uses NBracket stims on each side of the current DCE and weights as a function of

time or DCE number. ”L” has not been implemented.

FlagAfterStimTime = time in seconds after stim to mask bit.

FlagAfterStimMask = 32 (bit 5) bit masked for DCEs near a stim. Can be used by mopex

to ignore data near stim in coadd process.

– 14 –

ExtrapolatedMask = 64 (bit 6) bit to mask DCEs with extrapolated stim solutions.

The interpolation is performed using a table where the y value is stim-background. The

background for a stim is the immediate preceding DCE where it exists, or the immediate

following DCE if the stim DCE is the first in the fitscube. The uncertainty of the y value in

the table is the root-sum-square of the uncertainty in the background, the uncertainty in the

stim and a stim-to-stim variation calculated as StimVariability * (stim - bkg). The x value

in the table is the time of the stim. Stims may be missing, and a missing stim is simply

not entered into the table. In cases of double stims (e.g., when stacking multiple scan legs

together), the 2nd stim frame is ignored.

For the SPLINE technique, the independent variable is SCLK OBS for the DCE. Thus,

stims may be missing and the smoothness of the spline fit is relied upon to provide a rea-

sonable interpolation through missing stims. If an interpolation is needed outside the spline

table (i.e. before the first stim or after the last stim), the spline interpolation routine is

designed to perform a linear extrapolation.

For the least-squares technique (method=”X”), the chi squared linear fit routine from

Numerical Recipes is used. Several tunable parameters are available to control the fit method:

NBracket - determines the number of stims on each side of the current DCE in fit, note: 0

means use all stims

Power - exponent of the time difference (k)

IntegralWeight = 0 for using the actual times differences as weights

or = 1 for using the ceiling of the time differences (weight as function of the number of Stim

DCEs from the current DCE)

Weights are determined by the distance in time between the DCE time and stim time.

2.2.14. SLOPECAL

The slopecal module carries out the calibration and filtering for the MIPS-Ge pipelines.

The processing done by the module is controlled by the inputs such that operations are

skipped when no inputs are provided.

If a DARK, IC, and FC are given as input, the pipeline performs the following science

calibration:

I(t) = FC ∗ [U(t)/S ∗ R(t) − DARK]/IC

where

I(t) = unfiltered BCD product

U(t) = input slope image

– 15 –

S*R(t) = stim response function from INTERP,

DARK = dark calibration file MIPS70/160 DARK.fits

IC = IC calibration file MIPS70/160 ILCORR*.fits

FC = flux conversion factor which is given via a cal file.

If no FC and DARK are given as input, then I(t)=U(t)/S*R(t).

If no FC and IC are given, then I(t)=[U(t)/S*R(t) - DARK].

If no FC, IC, and DARK are given, then I(t) = U(t), which is used for 2nd pass filtering.

For both the 70µm and 160µm a high-pass median time filter is applied on a pixel basis,

and an additional column filter is applied for 70µm, resulting in the filtered fbcd products.

As with INTERP, there are separate namelist blocks depending on the observing mode,

such that it is possible to tune up processing based on data types. The modes are determined

via the header keywords EXPTYPE and FOVID/APERTURE which also ensures that the

appropriate calibration files (dark, flat) for a given mode are used. The different ”modes”

are:

SCAN = scan mode science (SCI) observations, EXPTYPE=scn

PHT = default-scale SCI photometry, EXPTYPE=pht

FINE = fine-scale SCI photometry (only applicable for 70µm)

Science FINE set for EXPTYPE=pht + FOVID> 117

SED = SED mode SCI observations (only applicable for 70µm), EXPTYPE=sed

TPM = TPM mode SCI observations, EXPTYPE=tpm

DARK = For DARK pipeline processing, EXPTYPE=d2a)

As an example, the namelist block of the SCAN mode interp input is shown here:

&SLOPECAL SCAN

Comment = ’Generic namelist file for slopecal, SCAN instrument mode.’,

JanskyScaleFile = cal/MIPS70 fluxconv.tbl,

BUNIT = ’MJy/sr’,

CauchyThreshold = 0.4,

ApproxThreshold = 0.2,

obs fitscube = ’current.fits’,

dark fits = ’cal/MIPS70 DARK.fits’,

aorstim fitscube = ’interpstim.fits’,

skyflat fits = ’cal/MIPS70 ILCORR.fits’,

– 16 –

obs sigma fitscube = ’current unc.fits’,

dark sigma fits = ’cal/MIPS70 DARK U.fits’,

aorstim sigma fitscube = ’interpstim unc.fits’,

skyflat sigma fits = ’cal/MIPS70 ILCORR U.fits’,

obs mask fitscube = ’bmask interp.fits’,

dark mask fits = ’cal/MIPS70 DARK C.fits’,

aorstim mask fitscube = ’NONE’,

skyflat mask fits = ’cal/MIPS70 ILCORR C.fits’,

FITS Out Filename = ’cal current.fits’,

FITS Nofilter Out Filename = ’nofilter current.fits’,

FITS Nofilter Err Out Filename = ’nofilter current unc.fits’,

FITS Err Out Filename = ’cal current unc.fits’,

FITS BMask Out Filename = ’bmask.fits’,

median count = 16,

median variance option = 1,

FITS Darksubt Out Filename = ’MIPS70 darksubt.fits’,

FITS Darksubt Err Out Filename = ’MIPS70 darksubt unc.fits’,

FITS Darksubt bmask Out Filename = ’MIPS70 darksubt bmask.fits’,

Comment = ’nonzero means column filter is on’,

colfilt = 1,

colfiltfirst = 1,

Log Filename = ’stdout’,

&end

median count indicates the high-pass time filter width in DCEs. The median filter

subtracts the median value of the surrounding DCEs on a pixel by pixel basis. If the

namelist parameter ”median count” is nonzero, then up to ”median count” of samples will

be extracted from the fitscube by looking for nonstim and non-NaN values in the following

order:

-1, +1, -2, +2, -3, +3, -4 +4 ...

until ”median count” values have been found. Stims are not affected. Pixels that are NaN’s

are not affected. The selection process will not go outside the boundaries of the fitscube,

– 17 –

which means the median buffer for the last nonstim pixel is the ”median count” non-stim

pixels preceding it.

colfilt is only used for 70µm. colfilt=1 indicated that the column filter is applied and

and colfiltfirst=1 means that the column filter is applied before the high-pass filter. The

column filter subtracts the median of the values of the good pixels in the column for each

column for every MIPS70 BCD. The bad readout region on the good side of the array is

ignored by using the information in the bmask.

2.2.15. Pointing Transfer and FPG

The pointing transfer pipeline is a separate script from the data reduction pipeline script,

designed to insert pointing and distortion information into the FITS headers of BCDs. It

operates on a per BCD basis.

The Final Product Generator (FPG) is executed at the end. The FPG reformats the

FITS header, renaming certain keywords and adding additional keywords from the database.

2.3. RAW Pipeline

The raw.fits images are produced by running the tranhead and imfliprot modules for

70µm and tranhead, swap and imfliprot for 160µm data, followed by the pointing transfer

thread and the FPG. Note that the raw data are still data cubes.

2.4. DARK Pipeline

Dark data is obtained with dedicated AORs during each Spitzer Campaign. These

calibration data are processed by the pipeline in a very similar manner to that of the science

data. In particular, the data proceed through all of the modules described above up to and

including slopecal. Within slopecal, only the stim response function is applied for dark data.

The slopecal namelist block is shown here:

&SLOPECAL DARK

Comment = ’namelist file for slopecal when performing dark cal product pipeline.’,

BUNIT = ’MIPS70 DARK’,

CauchyThreshold = 0.4,

ApproxThreshold = 0.2,

– 18 –

obs fitscube = ’current.fits’,

dark fits = ’NONE’,

aorstim fitscube = ’interpstim.fits’,

skyflat fits = ’NONE’,

obs sigma fitscube = ’current unc.fits’,

dark sigma fits = ’NONE’,

aorstim sigma fitscube = ’interpstim unc.fits’,

skyflat sigma fits = ’NONE’,

obs mask fitscube = ’bmask current.fits’,

dark mask fits = ’NONE’,

aorstim mask fitscube = ’NONE’,

skyflat mask fits = ’NONE’,

#nofilter product becomes bcd and filtered product is currently called nofilter,

FITS Out Filename = ’nofilter current.fits’,

FITS Nofilter Out Filename = ’cal current.fits’,

FITS Err Out Filename = ’cal current unc.fits’,

FITS BMask Out Filename = ’bmask.fits’,

median count = 0,

Log Filename = ’stdout’,

&end

The dark data output from slopecal subsequently enters the mipsdark module, which

combines the individual darks obtained in the AOR. A median-filter algorithm is applied to

the input cube on a pixel by pixel basis. Bad pixels for each DCE are flagged by the input

bmask and not used in the determination of the median for a given pixel. All pixel values

are examined to see if they are outliers, based on the value of the Cutoff Outlrs parameter in

the namelist block. Skip Post DCE determines the number of DCEs immediately following

the stimflash frame that will be rejected to minimize post stim transients.

&MIPSDARKIN

Comment = ’Generic namelist file for DARK, default values.’,

FITS Image Filename = ’cal current.fits’,

FITS Bmask Filename = ’bmask.fits’,

FITS Out Filename = ’MIPS70/160 DARK.fits’,

– 19 –

FITS Out Uncer Filename = ’MIPS70/160 DARK U.fits’,

FITS Out Cmask Filename = ’MIPS70/160 DARK C.fits’,

FITS Out Covmap Filename = ’MIPS70/160 DARK M.fits’,

Cutoff Outlrs = 2.5 ,

Outlrs Percent = 5.0 ,

Skip Post DCE = 0 ,

Nan Percent = 10.0 ,

Log Filename = ’stdout’,

&end

2.5. IC Pipeline

Illumination Correction (IC) data is obtained with dedicated AORs for each separate

mode (scan, phot, fine, sed, tpm) at various intervals throughout the Spitzer mission. Since

such data are acquired by simply observing an appropriate patch of the sky, these obser-

vations can be processed as both science and/or IC data. To produce an IC calibration

product, the data proceed through all of the modules described above, up to and including

slopecal. Within slopecal, a “ darksubt” output file is generated for each mode that can

subsequently be passed to the flatfield module for IC processing. A median-filter is applied

to the input cube on a pixel by pixel basis. Bad pixels for each DCE are flagged by the

input bmask and not used in the determination of the median for a given pixel. While the

IC calibration output files produced by the flatfield module were utilized for trending during

the Spitzer mission, they were never directly applied as calibrations for the science data.

The IC calibration files used for the science data were produced offline using a large number

of IC data from multiple campaigns.

&FLATFIELDIN

Comment = ’namelist file for mips flatfield’,

FITS Image Filename1 = ’MIPS70/160 darksubt.fits’,

bmask Filename = ’MIPS70/160 darksubt bmask.fits’,

pmask Filename = ’cal/MIPS70/160 PMASK.fits’,

FITS Out Filename = ’MIPS70/160 ILCORR.fits’,

FITS Out Filename 2 = ’MIPS70/160 ILCORR U.fits’,

FITS Out Filename 3 = ’MIPS70/160 ILCORR C.fits’,

FITS Out Filename 4 = ’MIPS70/160 ILCORR M.fits’,

cut post latent dce = 0,

trim prcnt = 48,

trim prcnt global = 0,

– 20 –

Log Filename = ’stdout’,

&end

