
Background Matching
By David Makovoz

10/15/04
Background Matching... 1

Overview... 1
Input Data.. 1
Namelist – Configuration file ... 2
Use of Uncertainty Images.. 4
Quality Control Mask Images ... 5
Other Options .. 5
Bright Object Masking (optional) ... 6
Fiducial Image Frame (FIF) Computation.. 6
Interpolation.. 7
Background Matching Algorithm... 7
Output .. 9
References ... 9

Overview
Background matching is one of the tasks performed by the package MOPEX.
Background matching is a two step process. First, the images are interpolated to a
common grid. After that, the actual matching is performed. The cumulative pixel-by-
pixel difference between the overlapping areas of all pairs of images is minimized with
respect to unknown constant offsets of the input images. Since interpolation is a linear
process the constant offset is conserved, i.e. the offset found for the interpolated images
is applicable directly to the input images. Optionally, the user can run an additional
preprocessing step in order to detect and mask all bright objects in the input images that
might adversely affect the process of background matching.
Perl script overlap.pl performs the above tasks by setting the necessary infrastructure and
calling the data processing modules.

Input Data
The script overlap.pl requires a set of input images and a namelist (configuration) file. It
can optionally use uncertainty images and mask images. The purpose of the latter is to
mark pixels in the input images unsuited for processing. Table 1 lists the names of the
input files for overlap.pl. These names can be set in the namelist file, or on the command
line; some of them have a default value. Except for the namelist, the names of the input
files can be specified using a relative or the absolute path. The command line settings
override the namelist settings.

Input File Default Name Namelist name Command
line option

Required

Namelist * overlap.nl N/A -n y

List of
input images

image_stack.txt IMAGE_STACK_FILE_NAME -I y

List of input
uncertainty images

- SIGMALIST_FILE_NAME -S n

Permanently
damaged pixels
mask image

- PMASK_FILE_NAME -M n

List of DCE status
mask images

- DCE_STATUS_MASK_LIST -d n

Fiducial frame table - FIF_FILE_NAME -F n

Table 1 Input data for overlap.pl. *- namelist needs to be in cdf/ sudirectory .

Namelist – Configuration file
The namelist contains several blocks of various parameter settings, input image names,
and running options. Most of the parameter settings for the modules are in the
corresponding blocks delineated by “&” following by the capitalized module name in the
beginning and “&END” at the end of the block. Several parameters affecting more than
one module are set outside of the individual modules’ blocks. Also, the locations of the
output final and intermediate products are set in the namelist file.
Table 2 lists the names of the modules, along with their purpose and namelist triggers. To
run a module, its trigger should be set to 1.

Module Namelist trigger Purpose

snestimator compute_uncertainties_internally* Compute uncertainties using
the model

medfitler run_medfilter Background subtraction of
the input images

detect run_detect Produce detection maps of
bright objects

fiducial_image_frame run_fiducial_image_frame Compute Fiducial Image
Frame (FIF)

mosaic_int run_mosaic_int Interpolate input images to
the FIF

compute_overlap_corr compute_overlap_correction Computes the constant
offsets to match the
background

compute_overlap_corr apply_overlap_correction

Adds the computed offsets to
the input images

Table 2 Modules, their namelist triggers, and purpose. * If have_uncertainties is set to 1, then the
user is expected to provide the uncertainty images name. This overrides the
compute_uncertainties_internally option.

The intermediate and final products are written in several subdirectories. The names of
the subdirectories can be configured in the namelist file. Table 3 lists the default names of
the output subdirectories, the keywords used in the namelist, and all the products written
in the subdirectory. OUTPUT_DIR can be specified as a relative or absolute path.

Subdirectory set in
Namelist

Default name Output files

OUTPUT_DIR ./ FIF.tbl

SIGMA_DIR Sigma Uncertainty images, if computed by
snestimator

MEDFILTER_DIR Medfilter Background subtracted input images

DETECT_DIR Detect Detection map images

INTERP_DIR Interp Interpolated images, interpolated uncertainty
images, and corresponding coverage maps

OVERLAP_CORR_DIR Overlap_Corr Corrected input images, the table with the
corrections offset.tbl

Table 3 Output directories and the products written there.

The subdirectories are created by overlap.pl.
Table 4 lists all the parameters, along with their default values, if any, a short description,
and the name of the module(s) using this parameter.
The input variables require a space preceding and following the equal sign,
i.e. "variable = value". An entry like "variable=value" will not be read and the hard-coded
default will be used so you will not notice that your input value is not being used.

Parameter Name Description Default Module
USE_REFINED_POINTING Switch to use refined pointing

keywords (int)
0 mosaic_int

MOSAIC_PIXEL_RATIO_X
MOSAIC_PIXEL_RATIO_Y

The ratio of the input pixel x-
(y-) size to the mosaic pixel x-
(y-) size. (float)

1 mosaic_int

Gain Gain in e-1/[image units]
(float)

- snestimator

Confusion_Sigma Confusion noise in e-1 (float) - snestimator
Read_Noise Read Noise in e-1 (float) - snestimator
Edge_Padding The number of pixels the FIF

is padded with on all four
0 fiducial_image_frame

sides (int)
CROTA2 If set, this is the orientation of

the FIF. If not set the program
will compute the optimal
orientation (float or char ’A’)

- fiducial_image_frame

Window_X
Window_Y

x-size and y-size in pixels of
the sliding window placed
around each pixel to estimate
the median (int)

- medfilter

N_Outliers_Per_Window Number of pixels excluded
from the sliding window
described above (int)

0 medfilter

Detection_Max_Area The maximum number of
pixels in a cluster (int)

9 detect

Detection_Min_Area The minimum number of
pixels in a cluster (int)

0 detect

Detection_Threshold Number of of sigmas above
the mean (float)

- detect

INTERP_METHOD Options are 1, 2, 3; the default
is 1 (int)

1 mosaic_int

DRIZ_FAC Drizzle factor. Use for
INTERP_METHOD = 2
(float)

1 mosaic_int

GRID_RATIO The number of grid points per
pixel in one direction. Used
for INTERP_METHOD = 3
(int)

- mosaic_int

TOP_THRESHOLD Number of sigma’s above the
mean to detect outliers among
the computed offsets(float)

- compute_overlap_corr

BOTTOM_THRESHOLD Number of sigma’s below the
mean to detect outliers among
the computed offsets(float)

- compute_overlap_corr

MIN_IMG_NUM Minimum number of
overlapping images to
perform outlier rejection (int)

4 compute_overlap_corr

Table 4 The processing parameters for overlap.pl. The shaded fields are for the parameters set outside of
the individual module blocks.

Use of Uncertainty Images
If the have_uncertainties switch is set, then, regardless of the setting of the
compute_uncertainties_internally switch, the script expects to find a list of

uncertainty images. The uncertainty images are interpolated and co-added. The co-added
uncertainty images are used in the co-addition of interpolated input images.
If compute_uncertainties_internally is set and have_uncertainties
is not set, then the snestimator module is executed. It produces uncertainty images, which
are subsequently interpolated, and used for co-addition.
Uncertainty images are required for overlap.pl, therefore either
compute_uncertainties_internally or have_uncertainties should
be set.
Module snestimator estimates pixel uncertainty for each pixel in the image using the
following model:

.2

2

2

2

g
I

gg
confusionreadnoise ++=

σσ
σ

Here the parameters of the model Read_Noise readnoiseσ , Gain g, and
Confusion_Sigma confusionσ are specified in the namelist. The last term is the Poisson
noise determined by the pixel value I.
The units of Read_Noise and Confusion_Sigma here are electrons. The product of
this step is the uncertainty images.

Quality Control Mask Images
Quality control mask images can be used in the processing. Two kinds of mask images
can be used: permamently damaged pixels masks (Pmask) and DCE status masks
(Dmask). Normally there will be a single Pmask for a set of input images.
Each bit of the pixel value in a mask image corresponds to a particular condition. A fatal
bit pattern is a short integer that has the bits of interest set. Each pixel in a mask image is
matched against the fatal bit patter. If any of the bits specified by the fatal bit pattern is
set in the value of a pixel in a mask image, then in the corresponding image the
corresponding pixel is considered unusable.
 If the name of the mask image or list of mask images is not set the scripts will proceed
without using them. If they are set then the corresponding fatal bit pattern should be
specified in the namelist.

Mask Name Fatal Bit Pattern Name

Pmask Pmask_Fatal_BitPattern

Dmask DCE_Status_Mask_Fatal_BitPattern

Table 5: Setting of fatal bit patterns for various mask images in the namelist file.

Other Options
1. Switch mask_bright should be set to used bright object mask images for

interpolation.

2. Switch NICE. If NICE =1 all the modules called by the script with “nice 19.” The
default is 0.

3. Switch save_namelist. The namelist used in the current run is always copied to
the output directory. By default the name of the namelist is not changed. By setting
save_namelist = 1 in the namelist the namelist copied to output directory will be
given a unique name, which is created by appending the namelist name to the time of
execution. For example, if you ran “mosaic.pl -n myname.nl” at 12:32:53,
then the namelist will be copied to the output directory as
12h32m53s_myname.nl. The default is 0, in which case the file is copied as
myname.nl.

4. Switch delete_intermediate_files. If delete_intermediate_files
= 1 is set in the namelist the products of all the modules run this time will be deleted
except for the last module. The default is 0.

5. Switch mosaic_corrected_images. If it is set to 1, then a mosaic of corrected
images will be created as OUTPUT_DIR/mosaic.fits. Since the interpolated images
have already been made, it is only a matter of applying the computed offsets to the
interpolated images and coadding them into a mosaic image. This is a quick-and-dirty
way to examine the results of overlap correction. You have to have the namelist block
for mosaic_coadd in the namelist in order to run this option. See Spitzer_mosaicker
for more details on mosacking images.

Bright Object Masking (optional)
Optionally, a preprocessing step can be run to mask bright objects that can bias the
background levels of the images in which they are present. Two modules are run –
medfilter and detect. Module medfilter produces background subtracted images. Module
detect detects bright objects in the background subtracted images and creates a set of
mask images, one per input image, in which pixels corresponding to the detected objects
are set to positive values. See Spitzer_apex.doc and Image_Segmentation.doc for more
information on these modules. The mask images are saved (if switch
delete_intermediate_files is not set) in DETECT_DIR subdirectory (default
name “Detect”). If switch mask_bright is set in the namelists, these mask images are
used in the further processing.

Fiducial Image Frame (FIF) Computation
This step is optional. If a table with the fiducial image frame had been created previously
it can be used by supplying its name in the namelist file using FIF_FILE_NAME
keyword.
This step creates a unified grid coordinate system that is used for creating a mosaic
image. Given a list of input images, the perl script fiducial_image.pl creates a list of
pointing parameters - CRVAL1, CRVAL2, CRPIX1, CRPIX2, CROTA2,
CDELT1, CDELT2, NAXIS1, NAXIS. Run subsequently, module
fiducial_image_frame generates the pointing parameters for bounding region of a
minimal size that encloses the input images. Even if the input images use the CD matrix
convention, the mosaic image (and by extension the interpolated images) will use the set
of keywords CDELT1, CDELT2, and CROTA2, since the mosaic image is undistorted.

Two namelist parameters are used by this module. Edge_Padding specifies the size of
the margin in the number of pixels padded around the FIF on all four sides. CROTA2, if
set, specifies the orientation of the FIF. If CROTA2 = A, then the orientation of the FIF is
found by averaging the twist angles of the input images. If CROTA2 is not set the
program will compute the optimal orientation. The product of this step is the FIF.tbl
table.

Interpolation
See document SIRTF_Mosaicer for the description of the interpolation step. Here we
only mention that since the high spatial frequency information in the input images is not
important for background matching it is suggested to use undersampled interpolated
images (MOSAIC_PIXEL_RATIO_X(Y) < 0). It will also have the added benefits of faster
processing and reduced memory usage. The module has been tested with simulated data
with MOSAIC_PIXEL_RATIO_X(Y) down to 0.25 without any significant loss in the
precision of the computed offsets. Also interpolated scheme 3 (Grid) with GRID_RATIO ~
2 * MOSAIC_PIXEL_RATIO_X(Y) can be used to speed up the interpolation step.

Background Matching Algorithm
The images interpolated to a common grid can be subtracted pixel-by-pixel in order to
match their backgrounds. We assume that the only correction required is a constant offset
en, i.e. that the following corrections should be applied to the input image In

nnn yxIyxO ε−=),(),(

Equation 1

Here On is the output corrected image.
The metric to be minimized is the combined uncertainty weighted difference between the
overlapping parts of each pair of input BCD’s:

∑ ∑
≠= ∈ +

−
=

imagesN

nmnm overlapk
m

m
n

n

mmnn

kk
kIkI

)(1,
22

2

)()(
))()((

σσ
L

Here m and n are image indices, kn is the pixel number in image n.
Minimization with respect to en’s

0=
∂
∂

nε
L

leads to the following set of Nimages -1 linear equations:

,
1

1

n
N

m

mnm zM
images

=∑
−

=

ε

where

()
.

; ;,

)(
22

)(
2222

∑

∑

≠

≠

+
−

=

+
=≠

+
−=

nrr rn

rnnr
n

nrr rn

nr
nn

mn

nm
nm

IIO
z

O
Mmn

O
M

σσ

σσσσ

Figure 1 The overlap of Image1 and Image2 is an area of four pixels with the following pixel indices: k1=
{36,37,38,39}; k2 = {0,1,2,3}, given that the first pixel has index = 0 and the x-direction is scanned first.

The symbol Omn represents the fact that the summation is done over the overlap area of
the m-th and n-th images. In Figure 1 the case of 2 overlapping images is shown. The
matrix element M12 is in this case equal to

.
)3()39(

1
)2()38(

1
)1()37(

1
)0()36(

1
2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

2
2

2
1

12
12









+

+
+

+
+

+
+

−=
+

−=
σσσσσσσσσσ

O
M

Equation 2

The actual ranges of indices symbolized by Omn are calculated using the input table with
the offsets and sizes of the interpolated images.
Since the problem is invariant under any arbitrary global shift d of all images, one of the
shifts will be left undetermined. Only Nimages -1 equations are solved. The undetermined
shift can be picked to be the last one e Nimages . It is set to 0 first in order to solve the
system Error! Reference source not found.. The additional constraint that will fix the
global shift is to have the total shift all images to add up to 0:

.,1for ;

;
1

,0)(

1

1

1

images
mm

N

m

m

images

N

m

m

Nm

N

images

images

=−=

=

=−

∑

∑
−

=

=

δεε

εδ

δε

Equation 3

The e’s are analyzed before applying the above condition. The outliers among the e’s are
found. The following namelist parameters are used: BOTTOM_THRESHOLD,
TOP_THRESHOLD, the thresholds for outlier detection in terms of sigma, MIN_IMG_NUM -
minimum number of images required to detect outliers.

Image1

Image2

If Nimages >= MIN_IMG_NUM equations modify Nimages to exclude the outlier e’s from
calculating d but apply d to all the e’s.

Output
The offsets en’s and the ir uncertainties are written in the header of the corresponding fits
files. The keywords are OVRLPDC and OVRLPDCD. Also a table offset.tbl is created
which contains the offsets and their uncertainties for all the files. Column outliers is
used to indicate whether the offset e was determined to be an outlier. The corresponding
fits header keyword is OVRLPOUT. Below is a sample output table:
|Image_id| Offset | del_Offset | outliers |
| int | real | real | int |
 1 0.13305403 0.00988516 1
 2 0.09888604 0.00963296 0
 3 0.01376509 0.00964912 0

References
All of the documents referenced in this document can be obtained from the Spitzer
Science Center website, http://spitzer.caltech.edu/SSC/. They include:

1. Spitzer _mosaicer.
2. Spitzer_apex.
3. Image_Segmentation.

