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1. General Form
The value of each input image pixel s; is a sum of the background and point
source contributions:

1

s, = b + XH_ x,
.

Equation 1

where b; is the sky and instrument background and the measurement noise, x; is the
intensity of the point sources in the sky multiplied by the calibration. It is convolved
with the overall point spread function (PSF). We assume that the PSF is independent of
the position in the image and is given by the normalized function H;. The summation is
performed over the whole image, but effectively only extends so far as the PSF remains
non-negligible.

The general problem is to estimate the probability of the point source being at a
particular pixel i given a measurement vector s in a certain window # surrounding this
pixel. We assume that the point source and background noise are characterized by the
distribution functions for point sources f£.(x) and f;(b) for the background. We consider
two hypotheses for the pixel i . The first hypothesis #; is that there is a point source at the
pixel, and the second /4, (null hypothesis) is that there is not a point source at the pixel.
Hipothesis 4, includes the possibility of having a bad pixel (a radhit).

The probability of £ hypothesis conditioned on the measurement s is given by
Bayesian theorem:

S h)P(A)

P(hk |S) = f(S)

Equation 2

where P(hy) is the a priori probability of the ¥ hypothesis, £(s) is the probability density
of observing the set of pixel values s. Assuming completeness of the hypothesis’ set, i.e.
P(hy)+ P(h)=1, we obtain for £{s)

&)=, f(sIh)P(h,) .

k=1,2
Equation 3

The probability density of measurement s under the null hypothesis is given simply by
the background distribution function £,(s). The probability density of measurement s
under the point source hypothesis is the result of integration over all possible point source
inputs Xx:



fs1h) =[x f(s]1%)f,(x) = [dx f,(s = HX) £, (%)
Equation 4

Here the distribution function £{s|x) of measured values s conditioned on the point source
contribution x is reduced to the background distribution function f;(s-Hx) because of the
additive character of the point source and background contributions (Equation 1). Matrix
H is constructed from the point spread function: H; = H,;, Combining everything we
obtain the final expression for the quantity in question:

P(hl)_[dx S5 (s =HX) £, (X) _
P(hl)jdxfb(s_x)fx(x)"'P(hz)fb(s)

[1+ A-P(1))£,(9) j
PO dx (= HX) £, (%)

P(h1|5):

Equation 5

2. Simplifications

To evaluate Equation 5 we need to make some assumptions about the point source
and background distribution functions. The Gaussian distribution is a realistic
approximation for the background distribution function.

£,(b) = N, exp(—%éch;éb) ,

N, =(2m)™"? (Det(C;!'))"? ,0b=b-b.
Equation 6
Here C, is the background covariance matrix, Det denotes determinant.

The problem is that now even if we assume the Gaussian distribution for the point
sources Equation 5 is computationally impossible to evaluate, even though it can be found
in the closed form.

The hypothesis we entertain is the presence of a point source at a given pixel i.
We make two assumptions. The first assumption is that this is the only point source
present in the window I, i.e. to say that we working in the limit of very low density of
point sources. The second assumption is that we can estimate the strength x, of the point
source at the pixel i given the data, thus reducing the distribution function to a delta-
function fi(x;)= 6 i((o(xi-xg). Using the above approximations we obtain an expression for
the probability P(%,|s):
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(1—P(h1>)exp(—;(s—ch,,(s—B)

P(hy|s)=|1+ 1 — —
P(hl)exp(—a(s —b —Hx,)"C,(s—b —Hx,)
Equation 7
Further simplification is achieved if the background is assumed to be uncorrelated
for different pixels, i.e.
[Cg/]b = 5[]'01?
Equation 8

— 1_P(h1) 1 5 2 _ IEAY ;
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Equation 9

The value of x, for the pixel flux density itself can be estimated by filtering the
input image. In general then we will need two images input for probability estimator: the
original input image before and after filtering.

The alternative is to derive a simple filter that can be applied on the fly and
incorporated into Equation 9. A point source of flux density x, at pixel i has the following
response p; in the window W: p; = xo H,; . We minimize the mean-squared-error (MSE)
between the data s; and the point source contribution p; with respect to the flux density of
the point source.
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Equation 10

After substituting this expression into Equation 9 we get for the probability of point source
presence at a given pixel:
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P(hy|s)=|1+

Equation 11

Another approach is to assume uncorrelated Gaussian distribution for the point sources
and background:

1 Ob?
b) = exp( — ,
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1 ox’?
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270, 20,

Equation 12
We also assume that there is only one point source, i.e. fi(x;)= f«(xo) d(xi-xg). Then
integration in Equation 4 can be performed.
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Equation 13
Here
H2
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Equation 14

Plug it into Equation 5 to obtain
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Equation 15
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