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1. General Form 

The value of each input image pixel si is a sum of the background and point 
source contributions: 
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Equation 1 

where bi is the sky and instrument background and the measurement noise, xi is the 
intensity of the point sources in the sky multiplied by the calibration.  It is convolved 
with the overall point spread function (PSF).  We assume that the PSF is independent of 
the position in the image and is given by the normalized function Hj.  The summation is 
performed over the whole image, but effectively only extends so far as the PSF remains 
non-negligible.  

The general problem is to estimate the probability of the point source being at a 
particular pixel i given a measurement vector s in a certain window W surrounding this 
pixel.  We assume that the point source and background noise are characterized by the 
distribution functions for point sources fx(x) and fb(b) for the background.  We consider 
two hypotheses for the pixel i . The first hypothesis h1 is that there is a point source at the 
pixel, and the second h2 (null hypothesis) is that there is not a point source at the pixel. 
Hipothesis h2 includes the possibility of having a bad pixel (a radhit).   

The probability of kth hypothesis conditioned on the measurement s is given by 
Bayesian theorem: 
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Equation 2 

where P(hk) is the a priori probability of the kth hypothesis, f(s) is the probability density  
of observing the set of pixel values s.  Assuming completeness of the hypothesis’ set, i.e. 
P(h2)+ P(h2)=1, we obtain for f(s) 
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Equation 3 

The probability density of measurement s under the null hypothesis is given simply by 
the background distribution function fb(s).  The probability density of measurement s 
under the point source hypothesis is the result of integration over all possible point source 
inputs x: 
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Equation 4 

Here the distribution function f(s|x) of measured values s conditioned on the point source 
contribution x  is reduced to the background distribution function fb(s-Hx)  because of the 
additive character of the point source and background contributions (Equation 1).  Matrix 
H is constructed from the point spread function: Hij = Hi-j.  Combining everything we 
obtain the final expression for the quantity in question: 
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Equation 5 

 

2.  Simplifications 

To evaluate Equation 5 we need to make some assumptions about the point source 
and background distribution functions.  The Gaussian distribution is a realistic 
approximation for the background distribution function. 
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Equation 6 

Here Cb is the background covariance matrix, Det denotes determinant.  

The problem is that now even if we assume the Gaussian distribution for the point 
sources Equation 5 is computationally impossible to evaluate, even though it can be found 
in the closed form.   

The hypothesis we entertain is the presence of a point source at a given pixel i.   
We make two assumptions.  The first assumption is that this is the only point source 
present in the window W, i.e. to say that we working in the limit of very low density of 
point sources.   The second assumption is that we can estimate the strength x0 of the point 
source at the pixel i given the data, thus reducing the distribution function to a delta-
function  fx(xj)= δ ji(δ(xi-x0).  Using the above approximations we obtain an expression for 
the probability P(h1|s): 
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Equation 7 

Further simplification is achieved if the background is assumed to be uncorrelated 
for different pixels, i.e.  
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Equation 8 
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Equation 9 

The value of x0 for the pixel flux density itself can be estimated by filtering the 
input image.  In general then we will need two images input for probability estimator: the 
original input image before and after filtering.   

The alternative is to derive a simple filter that can be applied on the fly and 
incorporated into Equation 9.  A point source of flux density x0 at pixel i has the following 
response pj in the window W:  pj = x0 Hi-j .  We minimize the mean-squared-error (MSE) 
between the data sj and the point source contribution pj with respect to the flux density of 
the point source.  
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Equation 10 

After substituting this expression into Equation 9 we get for the probability of point source 
presence at a given pixel: 
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Equation 11 
 
 
Another approach is to assume uncorrelated Gaussian distribution for the point sources 
and background: 
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Equation 12 
We also assume that there is only one point source, i.e. fx(xj)= fx(x0)δ(xi-x0).  Then 
integration in Equation 4 can be performed. 
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Equation 13 
Here  
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Equation 14 
 
Plug it into Equation 5 to obtain 
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Equation 15 
 
 
 
 
Appendix 
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