Making the Most of the Great Observatories: Cosmology and Large Scale Structure

David Weinberg, Ohio State University

- The Value of H₀
- Cosmic Acceleration
- The Extragalactic Background Light
- The Low Redshift Baryon Census
- Dark Matter and Galaxies
- The Physics of Galaxy Formation

The Value of H₀ A key cosmological parameter Recent cosmological developments make a precise measurement of H₀ more interesting, but raise the stakes. HST Contribution: Key Project determination to 10% I-band Tully-Fisher Fundamental Plane Surface Brightness Supernovae Ia Supernovae II Freedman et al. 2001 Velocity (km/sec) 2×104 2000 Calibrated Velocity (km/sec) 104 secondary 1000 distances 100 80 Direct Cepheid distances -500200 30 Distance (Mpc) 300 400 Distance (Mpc)

The Value of H₀ A key cosmological parameter Recent cosmological developments make a precise measurement of H₀ *more* interesting, but raise the stakes. HST Contribution: Key Project determination to 10% BUT: LMC calibration remains a significant hole

The Value of H₀

Observational Goals:

- Test LMC distance scale, e.g., maser galaxies
- Robustly improving precision to 5% (2σ , statistical + systematic) would be of great value.

Coma Cepheids? Golden Lenses?

1% distance measurement to Andromeda using time variable dust scattering echoes of AGN (10 Msec Chandra project)?

Standard of Merit: If direct H_0 measurements disagree with standard model inference from CMB + LSS at 3σ , will we believe the former?

Cosmic Acceleration The biggest cosmological mystery today

Conservatively: A new and dominant cosmic component with bizarre physical properties.

Less conservatively: A signature of the breakdown of GR, extra dimensions, observable consequences of string theory, ...

HST Contributions: Post-SN images of high-z hosts, enabling good photometry of SN discovered in ground-based surveys. Light curves of some ground-based SN detections. Discovery and light curves of supernovae at z > 1, deceleration epoch.

Cosmic Acceleration $H(z) = H_0 \left[\Omega_m (1+z)^3 + \Omega_k (1+z)^2 + \Omega_{DE} (1+z)^{3(1+w)} \right]^{1/2}$ $d_L(z) = c(1+z) \int_0^z dz^3 / H(z^3)$ Current focus: What is w? $\left[\rho_{DE} = \rho_{DE,0} (1+z)^{3(1+w)} \right]$ Observational Goals: • Test systematic uncertainties. • Maximize precision on w (and Ω_{DE}). • Lay groundwork for JDEM (supernovae and weak lensing).

Mostly
Useful
Supernova
Telescope
For our
Later
Years (A. Fruchter)

Cosmic Acceleration

Observational Programs:

- Continuing support for ground-based SN searches as needed.
- Weak lensing calibration of cluster mass indicators.
- Cosmic shear measurements of clustering evolution.

Standard of merit: Improve precision on or test systematics of w measurements, competitively with ground-based experiments. Test JDEM methods/limitations.

Cosmic Acceleration

Observational Programs:

- Continuing support for ground-based SN searches as needed.
- Weak lensing calibration of cluster mass indicators.
- Cosmic shear measurements of clustering evolution.

Standard of merit: Improve precision on or test systematics of w measurements. Test JDEM methods/limitations.

Should HST carry out more supernova searches?

Motivation: detect time variation of w, high-z needed.

$$H(z) = H_0 \left[\Omega_m (1+z)^3 + \Omega_k (1+z)^2 + \Omega_{DE} (1+z)^{3(1+w)} \right]^{1/2}$$

Cosmic Acceleration

Observational Programs:

- Continuing support for ground-based SN searches as needed.
- Weak lensing calibration of cluster mass indicators.
- Cosmic shear measurements of clustering evolution.

Standard of merit: Improve precision on or test systematics of w measurements. Test JDEM methods/limitations.

Should HST carry out more supernova searches?

Minimal standard of merit: For most optimistic assumption about time variation, expect 3σ discrimination from closest constant w model.

The Extragalactic Background Light

Observational goals:

- Close gap between resolved sources and absolute measurements.
 - Raise lower limits from resolved sources.
 - New absolute measurements.

Standard of Merit: Any significant improvement valuable.

The Low Redshift Baryon Census Basic Bookkeeping

BBN and CMB: $\Omega_{\rm b} \approx 0.022 {\rm h}^{\text{-}2} \approx 0.05$

At z~3: most baryons are "detected" in the Lya forest. At z=0, about 10% in galaxies, 10-20% in detected X-ray

emitting gas.

The Low Redshift Baryon Census Basic Bookkeeping

BBN and CMB: $\Omega_{\rm b} \approx 0.022 {\rm h}^{-2} \approx 0.05$

At z~3: most baryons are "detected" in the Lya forest.

At z=0, about 10% in galaxies, 10-20% in detected X-ray emitting gas.

Most low-z baryons are "missing".

Theory predicts: At low z, most baryons are in a thin Lya forest or a relatively diffuse, shock heated medium (a.k.a. "WHIM").

Observational Goals: Probe low column density Lya forest at low z. Fully characterize relation between Lya forest and galaxies. Map shock-heated IGM as well as possible.

The Low Redshift Baryon Census

The Low Redshift Baryon Census

Observational Programs:

- Cosmic Origins Spectrograph tremendously powerful instrument for low-z Lya forest and low-z OVI absorbers.
- Sensitive X-ray emission measurements extending beyond virial radii of clusters and groups.
- X-ray absorption measurements with Chandra are hard, but may be the only chance of characterizing main body of WHIM until Constellation-X.
 - 1.4 Msec spectrum of z=0.36 blazar "should" yield 10-20 lines, OVII/OVIII and CV (Nicastro et al. poster).
 - OVI matching reduces contamination but may miss strongest OVII absorbers.

Standard of Merit: Significantly improve empirical understanding of low-z baryon distribution and relation between IGM and galaxies.

Dark Matter and Galaxies From the seen to the unseen

Basic Questions:

- What is the relation between galaxies and dark matter, over a wide range of lengthscales and redshifts?
- How does the clustering of dark matter change with time?

Dark Matter and Galaxies

Lensing (strong and weak):

- Elliptical galaxies have approximately flat circular velocity profiles.
 - Galaxy halos have substantial ~106Msun substructure.
- Cluster cores are dense. Galaxies in clusters have halos; collisional dark matter disfavored. Galaxy halos in clusters are tidally truncated.
 - Measurements of galaxy-mass and mass-mass correlation functions from $\sim \! 100$ kpc to $\sim \! 10$ Mpc scales.

Clustering:

- Constraints on relation between halo mass and galaxy number.
 - Relatively simple models explain broad sweep *and* subtle features of data.

Dark Matter and Galaxies

Observational Goals:

- Better constraints on galaxy mass profiles, substructure
- Constrain halo occupations via clustering for galaxy classes defined by mass, SED, morphology, over range of redshifts
- Measure galaxy-mass and mass-mass correlations
- Lay ground-work for future wide-field imager (MUSTFLY)

Observational Programs:

- High resolution imaging of strong lenses (also multiwavelength imaging of AGN accretion disks via microlensing)
- Large surveys, multi-wavelength, deep in at least one band (Is there more to do, or are surveys to date adequate?)

The Physics of Galaxy Formation

Key Questions:

- What causes bimodality of the galaxy population?
- What shapes the galaxy luminosity function?
- What determines galaxy morphology?
- What is the link between galaxies and their central black holes?
- Is the stellar IMF universal?

The Physics of Galaxy Formation

Observational Programs:

- Map $\Phi(M_*, SED, morphology, environment, redshift)$ as fully as possible. (Done?)
- Measure Extragalactic Background Light and understand its sources.
- Characterize AGN hosts over wide range of z, L, SED.

Top Priorities for the Great Observatories?

- Attain convincing 5% limits on H₀ (95% confidence, statistical and systematic).
- Convincingly pin down the EBL and its sources.
- Map the diffuse low-z IGM as thoroughly as practical.

- The Value of H₀
- Cosmic Acceleration
- The Extragalactic Background Light
- The Low Redshift Baryon Census
- Dark Matter and Galaxies
- The Physics of Galaxy Formation